
Reliability-constrained robust design optimization for multi-reservoir river systems
Nathan L. Gibson∗,1, C. Hoyle2, M. McIntire2, and V. Vasylkivska1

1Department of Mathematics and 2School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR, USA

Abstract
The robust design objective formulation utilizes a weighted combination of the mean and variance of
the performance function. We apply Stochastic Collocation to approximate a Certainty Equivalent from
Utility Theory which allows efficient gradient computations. We then recycle collocation points to inform
a surrogate of constraint functions which is used in a First Order Reliability Method. The combined
approach is applied to a multiple dam hydro-power revenue optimization problem with uncertain inflows.

Reservoir System

Problem Description

I Control variables are flow through turbines, which generate power, over a fixed time horizon, for each dam.
I Dynamic hydraulic routing determines flow through reservoir network.

I Saint Venant Equations
I Multiple forecasts of stream inflow, power demand, variable generation (wind), and market prices.
I Objectives include: revenue generated, deviation from demand, mid-range planning end time condition.
I Constraints include: minimum oxygen levels, maximum flow through turbines, maximum change in flow
through turbines, max and min water elevation.

Problem Assumptions

I Only considering Bonneville, The Dalles, John Day, and McNary dams
I Most significant uncertainty due to hydrologic conditions (particularly stream inflows)
I Uncertainty inferred from the inflow forecasts.

Problem Constraints

Let Si(t) be the amount of water stored in reservoir i at time t, and Qi(t) be the flow through the turbines.
At each time t ∈ (0, T ] and each dam i we need

Qi(t) ≤ Qmax
i (t)

Qi(t) ≥ Qmin
i (t)

Si(t) ≤ Smin
i

Si(t) ≥ Smax
i

∆Qi(t) ≤ ∆Qmax
i (t)

m∑
i
Si(T ) =

m∑
i
Si(0)

Methods

I Pool routing model
I Computes the inflow into the reservoir from the river and the storage level of the reservoir.
I Assumes that water leaving a dam is instantaneously available at the next dam.
I Allows for efficient computation of gradients.

I Random parameterization of inflows
I Karhunen-Loève Expansion

I Robust objective
I Stochastic Collocation

I Probabilistic constraints
I Inverse Reliability Method

Karhunen-Loève Expansion

I Given M predictions of the tributary inflow Qext forecasted for the same points in time {tj}nj=1.
I Assume that the logarithm of the inflow function Qext can be represented as a Gaussian process.
I We take data transform Lm(tj) = lnQext

m (tj) , m = 1, ..,M .
I We compute the expectation L̄ and covariance C of the log stream inflows

L̄(tj) = 1
M

M∑
m=1

Lm(tj), j = 1, .., n,

C(tj, tk) = 1
M − 1

M∑
m=1

(
Lm(tj)− L̄(tj)

)(
Lm(tk)− L̄(tk)

)
, k = 1, .., n.

I The random process Qext(t, ~ξ) can be represented as

Qext(t, ~ξ) ≈ QN
ext = exp

L̄(t) +
N∑
k=1

√
λkψk(t)ξk

 .
I Where (λk, ψk): λψ(t) =

∫
C(s, t)ψ(s)ds.

I {ξ}Nk=1 is a sequence of standard normal random variables.

Polynomial Chaos Representation of the Solutions

Consider storage function S at a particular dam as one of the solution components. Its representation in terms of a degree p polynomial
expansion

Sp(t, ~ξ) =
Mp∑
i=0

vi(t)φi(~ξ).

I ~ξ = (ξ1, ξ2, . . . , ξN) are r.v. in the representation of QN
ext.

I {φi}
Mp

i=0 are the N -variate orthogonal polynomial functions of degree up to p
I if {ξk} are i.i.d. N(0, 1), {φi}Mp

i=0 are chosen as tensor products of univariate Hermite polynomials.
I The coefficients vi, i = 0, ..,Mp can be computed with the Gaussian quadrature rule.

Robust Optimization

Robust optimization captures two design concepts:
I Robustness of an engineered system is the insensitiveness of the system performance to noises from all possible sources,
including both external noises and control variable variations.

I Reliability of an engineered system is the ability to fulfill its design purpose for some specified time. In a narrow sense, reliability
is the probability that a system will not exceed a specified limit state (ultimate or serviceability) within the specified operating
time frame.

Robust Optimization Under Uncertainty

With respect to optimization under uncertainty,
I Robustness is achieved by considering both the mean and variance of the original objective function

max
v

{
E[f (v)]− rVar[f (v)]

}
,

v - control variable.
Decision maker has to specify risk aversion coefficient, r.

I r > 0 - risk-averse decision maker
I r < 0 - risk-seeking decision maker
I r = 0 - risk-neutral decision maker

I Reliability is achieved by considering the constraints to be probabilistic.

Utility Theory

I Choice of control v defines an uncertain outcome f which corresponds to some certainty equivalent CE.
I Assume there exists a monotonic utility function U , defined implicitly

U(CE) = E[U(f (v))].

I The Case study below considers a utility function of the form

U(f ) =

a + becf , c 6= 0
a + bf, c = 0.

a, b, c - constants.
I For this form, the representation of the certainty equivalent is simply

CE = E[f ] + 1
2
cVar[f ].

Stochastic Collocation

I Choose a set of Ncp collocation points ~zj = (zj,1, zj,2, . . . , zj,N) in random space and weights wj, j = 1, .., Ncp.
I For each j = 1, .., Ncp evaluate the inflow function Qext,j(t) := QN

ext(t, ~zj).
I Given values for all control variables Qi (assigned by optimizer), simulate storage Sj(t) and compute revenue Rj(t).
I Estimate expected utility as a function of revenue

E[U(R)] ≈
Ncp∑
j=1

wjU(Rj).

Probabilistic Constraints

Consider constraints as probabilistic, i.e., given a reliability level α for a constraint function g

P(g > 0) ≤ α

For example,
P(Smin

i − Si(t, ~ξ) > 0) ≤ αmin
i ,

P(Si(t, ~ξ)− Smax
i > 0) ≤ αmax

i .

1. Using the same collocation points {~zj}Ncp

j=1 we can use the simulations above to evaluate g(~zj), j = 1, .., Ncp.
2. We build a degree p PC representation (or surrogate model) of the constraint surface g , gp, using the values calculated at
{~zj}

Ncp

j=1. For convenience of notation, we denote the PC expansion, as well as further improved surrogate models, by g̃.

Inverse Reliability Method

1. Find ~ξ∗ as a solution to the α-constrained problem (note Φ is the standard Normal cummulative distribution function)

max
~ξ
g̃ subject to Φ(‖~ξ‖) = α.

2. Sample the system to get g(~ξ∗). Update the surrogate model g̃ by accounting for the new data point (~ξ∗, g(~ξ∗)).
3. Repeat steps (4)-(5) stopping when the difference between two subsequent ~ξ∗ is smaller than a prescribed tolerance.
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Numerical Experiments Description

Here we compare the use of the probabilistic constraint formulation to a more common safety factor approach.
Probabilistic Case: α-level 0.05
I Utility function U = a + becf .
I Assuming risk aversion, we set a = 0, b = −1, c = −3e− 5.
Deterministic (safety factor) case: margin of safety ms = 0.05
I Si(t) > Smin

i + ms(Smax
i − Smin

i )
I Si(t) < Smax

i −ms(Smax
i − Smin

i ).

Numerical Experiments Description

I The KL expansion is truncated based on the magnitude of the eigenvalues. Here we choose three random variables to represent uncertainty in the inflows.

Numerical Experiments Results

Turbine flow rates

Mean storage volume

Numerical Experiments Results

Comparison of robust and safety factor approaches

I Once the optimal solutions are determined, the actual failure
probability for each case is estimated by Monte Carlo sampling.

Current and future work

I Implementation of Saint Venant model for the reservoir network simulation.
I Multi-objective optimization.
I Gradient-based optimization (currently gradients are only used in the
α-constrained optimization for the Inverse Reliability Method).

I Flexible-robust optimization: providing the largest possible range of robust
options to the decision-maker.

I Design space dimension reduction using historical decisions.
I SDE model for price market.
I Statistical representation of demand and wind power.
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