A Notis a Naught is a Knot
John Christopher Turner
16 August 1991
The University of the South
Oregon State University REU Program

1. Introduction. For many years the study of knots and knot theory has
preoccupied mathematicians. When first formally observed in the 1880's, it was
thought that knots were similar to the atom. Each knot represented a distinct
atom, so if one could understand knots and tabulate them then one could
understand the atom and its structure. In the late 19th century the inquiry into
knots and their structure halted. Niels Bohr proposed his model of the atom, and
~ most were convinced that he had propeﬂy modeled the atom. His model had
nothing to do with knots at all, so the topic was abandoned for over 100 years. In
the 1980's, chemists started delving into the knotted structure of DNA. It has been
theorized that mathematical knots and the knotted DNA are very similar; thus,
there has been a resurgence in the study of knots. An entire branch of Topology
known as "knot theory" has been pioneered and developed to further study the
knot.!

My summer project concerned knots, their projections, and several
different equivalent knot representations. Basically, I wanted to design an
algorithm that would transform a knot projection made up of curved line
segments into a straight line segment projection. This "stick" model could then
be lifted into three dimensions and would be equivalent to the original knot. Not
only this, but I with the help of Dr. Dennis Garity (OSU) have come up with some
conjectures about the stick number of the general knot and its relation to the
crossing number. Before we go any further here are some definitions:

2. Definitions.
1. A knotis "an embedding of a circle S! into Euclidean 3-space, R3, or the 3-
sphere, S3."2 In other words, a knot is a subset of R3 homeomorphic to
. the unit circle, S1, in the plane.
2. Two knots K & K are equivalent if there is an orientation preserving -
homeomorphism h:R3 — N3 such that h(K) = K.

1 Adams, p. 4.
‘2 Burde, Zieschang, p. 1.
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3. A polygonal knot is a knot made up of a finite number of straight line
segments (sticks).

4. A stick is a line segment of finite length.

5. The stick number, S(K), of a knot Kismin {n | 3 a polygonal knot K’
equivalent to K with K’ made up of n line segments).

6. A projection of a knot is a mapping from the knot K — R2 defined by the

function f: f(x,y, z) = (x, y, 0). Such that the projection is a graph in the

xy plane.
7. A crossing is a point on the projection such that Ff1:f1l(zy) yields

two distinct values (X1, y1, Zg) and (Xg, Yo, Z9) Where xj =X, 1 = ¥2, and

z1 # 2. The one with the larger z-coordinate is called an overcrossing,
and the other is the corresponding undercrossing.

8. The crossing number, C(K), of a knot K is the min {nl 3 a knot K equivalent
to K with projection of K having n crossings}. '

9. Seifert circle. The Seifert algorithm takes any knot and creates an orientable
surface with one boundary component such that the boundary circle is that
knot. I am not concerned so much with the surface as I am with the
circles that are a by-product of the algorithm. First take the projection of
the knot and look at the crossings. At each crossing, two segments come in
and two go out. Remove the crossing and connect the segment entering the
crossing with the adjacent one leaving the crossing. Eliminate all
crossings and the result will be a number of circles in the plane. These
circles are Seifert circles.3

10. A Polygonal Seifert Circle (PSC) is a polygonal representation of a given
Seifert circle The PSC is equivalent to the original Seifert circle and is
constructed with straight line segments instead of curved line segments.

11. An alternating knot is "a knot with a projection that has crossings alternating
between over and under as you go around the knotin a fixed direction."*

3. An Algorithm. Here is the algorithm that I have designed to transform a
knot projection into the appropriate stick knot projection.

3 Adams, pp.70-71
4 Ibid, p.5.
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I. First we must orient the knot projection by placing arrows on the curved line

segments.
II. Construct the oriented Seifert circles corresponding to the knot projection, and

identify the crossings by small filled circles.
ITI. Replace the circles with Polygonal Seifert Circle (PSC) representations.

(Note: The third step is the most important step. If this is done correctly then the

algorithm will yield the results that I have stated and will lead to my conjecture.
See the PSC constructions of knots 31 through 857 in the back of this text.)

IV. Adjust the vertices of the PSC representation to form a polygonal knot.

If this can be done for any knot then it is my conjecture that the polygonal knot K*
is equivalent to the original knot K, and = S(K) < 2*C(K_).

Conjecture: Every knot K with C(K) = n has a PSC representative with < 2n
line segments, so C(K) =n = S(X) <2n.

Example: The Trefoil Knot (31)

Step I Step I ’ Step IIT
Q/} S
Oriented Trefoil projection Oriented Seifert circles Oriented PSC projection

In this case, I claim that the trefoil knot can be constructed in less than or equal to six
sticks. (Note: Step IV of the algorithm is not shown here but is described in more detail

in sections 5-9.)

4. Overview. There are several things that we need to prove and look at before the
conjecture can be proved in the general case. The Polygonal Seifert Circle (PSC)
projections are basically graphs in the xy plane. The sticks are finite line segments of
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varying lengths, and the crossings are vertices of the graph. Once the PSC projections
are constructed in the xy plane, the vertices are moved and adjusted above and below the
xy plane (in the z direction) to create the crossings. | .

More specifically, the PSC projections form piecewise "circles" in the plane, and
the crossings are represented by the vertices. For every vertex there are four edges that
emefge. At each vertex, the four edges are paired and represent the two distinct Seifert
circles that intersect at that vertex. (A, B) will be the notation for a pair of edgesin a
Seifert circle that is oriented such that A is visited first and then B. Also in the following
diagrams, the Seifert circles will be labelled or colored distinctly. The end product (in an
alternating knot) is to produce an alternating pattern of colors (solid/dotted). That is to
say that (in the end product) if a dotted line goes into a crossing a solid line will come

out.

5. Lemma 1. Assume that PSCs can be constructed with j sticks where there are
no overlapping edges.' This forms a polygonal projection of the knot K. Then S(K) <j.
What this means is that in the PSC representation the vertices can be adjusted in
R3 to form a polygonal knot K' with j line segments which is equivalent to K. The only
way that a new stick would be added is if a crossing appears where it is not supposed to
occur.
(1) Example:

_———»
o

figure 1 »

In figure 1, the pairs of line segments (A, D) and (B, C)areap
of a PSC representation. In this example, we want (B, D) to pass over (4, C). .So, A, O
and (B, D) have their own vertex represented together by the single filled circle. By
pushing down the vertex at (A, C) below the plane and raising the vertex at (B, D) above.
the plane an overcrossing is established such that (B,D) crosses over (A, C).

Assuming that the sticks are line segments in the xy plane, the raising and
lowering of the vertices will not introduce any new crossings. The lengths of the line
segments will vary to accommodate for the "stretching," but the vertex remains fixed in.

art of a continuous section
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the xy plane (there is no lateral movement). The only movement is in the z direction as
the vertex is being "adjusted.” Since there is no lateral movement, the line segments
‘can not cross each other at any point except the vertex. No new crossings are introduced
which implies that no new sticks are added; therefore, we still have j line segments.

(2) Given the knot k assume that the first i vertices have been adjusted. Show that the
i+1 vertex can be adjusted without effecting the i vertices and without adding new line

segments. This implies S(K) <j.
We can see from (1) that by adjusting any vertex no lateral movement is involved.

Therefore, by adjusting the i+1 vertex in the vertical direction, the other i vertices will
not be effected. No new crossings are introduced, and we still have j sticks.

In (1) the lemma holds true, and we have shown that given i vertices the
adjustment can be performed on the i+1 vertex without effecting the i previous vertices.

Thus by induction the lemma is true for all i. QED

.1 will call this graph a graph of type T1. Therefore any graph that can be
constructed with no overlapping edges is of type T1.

6. Lemma 2. Assﬁrﬁe PSCs can be constructed with one overlapping edge and j
sticks. Show S(K) <j.

Example:

figure 2
In figure 2 we have the case where two polygonal Seifert circles intersect with one

edge overlapping. Vertices 1 & 3, vertices 2 & 4 and segments E & B actually coincide,
but for clarity I have separated and labelled them twice. As shown above (A, B, C) and
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(D, E, F) are two distinct "circles” that overlap in one common edge and two vertices.
There are several cases to consider, but only one is non-trivial.

Case 1. If the orientation was different, say that segment (D, E, F) was oriented
such that it was (F, E, D) then the construction would look completely different, and
there would be no overlapping edge. There would in fact be three distinct circles in this
diagram. (Note: This is discussed in section 7) |

Case 2. Ifcrossings 1 & 3 and 2 & 4 were of the same parity (both over or under

crossings) then clearly each vertex could be adjusted by an algorithm similar to that in

lemma 1.
Case 3. Ifcrossings 1 & 3 and 2 & 4 were of the opposite parity (an alternating

knot), then the vertices could not be adjusted by lemma 1 because raising or lowering the

vertices would introduce a new crossing of segment E and segment B.
There is a way to adjust these vertices but it requires two steps. It first requires

the lateral movement of vertices 1 and 2.

Step 1: Move vertex 1 and 2 along the slope of the line D and F' respectively. Once
this is done put segment B back in place. The effect of this movement is to actually pull
segment B away from segment E in such a way that the magnitude of segment B may

 now be different than that of segment E (see fig. 3).

figure 3
Clearly this action will not introduce any new cros
any other parts of the knot. This can be guarantee
construction, segment B only intersects segments A, E,and C. So

sing provided that B does not cross

d by a simple distance argument. By
3 an € such that if &
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is any other segment, the distance between B and  is > €. Restrict the movement of

: €
segment B so that no point moves by more than >
Step 2: Once segment B is moved, the vertices 1 & 2 can be adjusted. By an
argument similar to that in lemma I, vertices 1 & 2 can be adjusted without adding any
new crossings. This implies that we still have j line segments. '

figure 4
Figure 4 shows an over crossing and then an under crossing of (D, B, F). By raising
vertex 1 above the plane and lowering vertex 2 below the plane this was accomplished.
Just the opposite can be done by performing the reverse actions on the vertices.

" Notice that (A, E, C) remains fixed and is not moved at all in this process. It
should be noted that when (D, B, F) was extended, it was the "inside" segments D, B, F
that were moved while A, E, & C remained fixed. Only the segments of the inside circle
can be moved. Since segments B & E coincide to begin with, I simply chose to move
segment B to illustrate the alternating nature of this knot. (See section 4 about coloring
~ of graphs). If the "outside" segments A & C (dotted) (see fig. 2) had been moved this

process would not work because it would have introduced new crossings. Therefore, the

inside segments must be the segments moved.

7. Special Cases. There are several special cases of lemma 2 that we need to clear
up before going on. The first case is one that occurs quite often in the algorithm. The .
problem occurs when a construction similar to figures 5-7 appears.
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figure 5 - figure 6 figure 7
Case 1: Figure 5 shows step I of the algorithm mentioned in 3. C1 and C2 stand

for crossing one and crossing two. In the second step, figure 6, the Seifert circles are

constructed and oriented. We can see that there are in fact three Seifert circles needed
in this step of the algorithm. S1, 52, & S3 stand for Seifert circles 1, 2 & 3. And, finally,
in figure 7, the PSC representation of this one part of the original projection is
constructed. C1 and C2 have now been split up so that they will be easier to consider.
The question arises as whether a similar argument used in lemma 2 will work here
also. With a little lateral movement it is clear that the same operations can be

performed.
\]2 I 1 ,——"V 1 “ﬂ_,—v
A ' D A < A " D
2. 2
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Figure 8 figure 9 figure 10

In figure 8, the segments have been relabelled and recolored for clarity. (A, D)is
S1; (E, B) is S2; And, (C, F) is S3. The solid segment (A, B, C) is the analog of the curved
segment in the original projection that comes in from the top left corner, and (¥, E,D)is
the analog to the curved segment that comes in from the lower right corner (see fig. 5).
The crossings C1 & C2 have been broken up into C1 = {1, 2} and C2 = {3, 4}. With these
clarifications, it is easy to see that a similar argument used in lemma 2 will also work
se. Vertices 2 & 4 are extended along the slopes of segments A & C to produce
similar to lemma 1. Figure 10 shows
knot. Since these actions only

in this ca
figure 9. Then vertices 2 & 4 are adjusted in a way
the adjustment of the vertices to produce the alternating
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produce movement on these two vertices, they, as before, have no effect on any crossings

that comes before or after these crossings. A .
In the above case, the "middle" Seifert circle was located between two other

convex Seifert circles. The next obvious case is when the middle circle appears between

two concave circles.

Case 2: In the following case the pictures look much the same except that the
circles are concave. Figures 11-13 show the first three steps of the algorithm.

\/&/ \/Cz\//&” \ii'A/ss

figure 11 figure 12

After the first three steps, the next step involves the lateral movement of segment B. It
is important to note here that the length of segments B & E are equal. By moving
segment B to the right and extending vertices 2 & 4, we can see that the reduction of
segment E may be necessary to insure that segment E does not cross segments A or C
(see fig.15). All of these actions done with the same distance considerations of lemma 2.

. £ : .
All lateral moves are restricted to less than 3 Once the lateral movement is finished

vertices 2 & 4 can be adjusted in a way similar to lemma 1 (sée fig. 16). )
A _yer. D A o A -
[ ] --~~ [ X o P [ B . D
g /x L /; 2
1 : 1
E!lB g !'|B E'gB
] 1 P ! ”
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34 ~®, 04
ﬁgu.’re 14 figure 15 figure 16

(Note: The coloring here and in Case 1 is not exactly as described earlier because there
are three circles and not two (and only two colors available to me). Therefore, the solid
line represents one strand of the finished knot while the dotted represents the other.)
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I will call any of the graphsin sections 6 and 7 a graph of type T2. Therefore any
graph that can be constructed with one overlapping edge is of type T2.

8. Lemma 3. Assume PSCs can be constructed with two overlapping edges and j
sticks. Show S(XK) £j. : '

In figure 17, we can see that there are two overlapping edges. There are two
circles that intersect here: the inner circle is (E, F, G, H) and the outer circle is (A, B, C,
D). If we look at the figure 18, it is clear to see that segment B can be moved laterally and
the vertices can be adjusted with an argument similar to lemma 2.

4.
PE
¢ \‘
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b
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B
figure 19

However, it is not so obvious in figure 19 that segment C can be moved and the vertices
adjusted. Notice that once again the minside" circle is the one that is being stretched.
Each time a vertex is adjusted the "inside” (solid line) segments are the ones that are
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lengthened. If the "outside” (dotted line) segments were moved this process would not
work. As before segments B & F and segments G & C coincide and the dotted segments
were chosen to show the alternating property of the knot. But getting back to the next
vertex, if you look carefully, the only vertex that needs to be adjusted when segment C is
moved is the vertex on the right end of the segment. The left vertex does not need to be
adjusted since it is already in place from the previous adjustment to segment B (the
crossing is correct). Therefore, the two adjustments can be made without the
introduction of any new crossings, and we still have j sticks.

Extehgign of lemma 3; Assume PSC can be constructed with all overlapping
edges and j sticks. This implies that S(K) <j.

It should be obvious from the above argument that if two Seifert circles completely
coincide that each set of vertices can be moved and adjusted. There are several cases
like this that appear in the knot tables. 33, 51, 71, 91,-..

Example: 5,

Starting at the bottom two segments, the first two vertices are adjusted in an argument
similar to lemma 3. Then the next three can be adjusted in a similar fashion. If the
process is done correctly the last two segments will already be adjusted and the
crossings correct. This is done without the introduction of any new crossings, and we

still have j sticks. ,
Therefore, this type of operation can be performed on a graph with any number of

consecutive overlapping sides.
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I will call any of the graphs in section 8 a gfaph of type T3. Therefore any graph
that can be constructed with two overlapping edges is of type T3.

9. Conclusions. So, now we have graphs of type T1, T2, and T3. I claim that these
are the only three types that will occur in a PSC representation. I have still yet to prove
my conjecture and will not be able to in this paper without some more research. But, it
is quite possible that given any knot X, S(K) < 2n where n is the number of crossings. I
have constructed tables in the back of this text with verification of my original conjecture
with knots up through the 8-crossing knots. In each case, the stick number of the knot

is equal to 2n.

Refined Conjecture: Every knot can be transformed (using the algorithms above)
into a graph in the xy plane that resembles T1, T2, or T3, or any combination of T1-T3. If
this can be done for every knot then given any knot K with C(K) = n then S(K) < 2n.

10. Optimized stick models. After constructing the polygonal analog of some
knots, I was able to optimize them and reduce the stick number of the polygonal knat to
less than 2n. With the aid of Mathematica™, I constructed graphic 3D images of the

knots using the following code:

knot[L _,V_] :=( -

knotlist={};
Do[AppendTo[knotlist,Graphics3D[stick[L{H]LLI[+111,v],
ViewPoint->{0,0,2} ,PlotRange->All]],

{i,1,Length[L]-1}];
Apply[Show,knotlist]); This part builds the knot.

v={0.15,0.15,0}; This line is for the thickness of the sticks.
stick[L1_12 ,v_] ::Polygon[{Ll,L1+v,L2+v,L2}] This is the stick maker.

Basically what this code does is graphically display an image of what the

polygonal knot would look like in 33 from an above viewpoint. The under and

overcrossings are evident in the image as they would be in a physical stick model.

The following code lists a series of vertices for the trefoil knot, and the program
draws thin rectangles between the vertices to make the actual polygonal knot.
wrefoil = {{1, 0, -2}, (5, 0, 2}, {2, 5, -2}, {0, 2, 0}, {6, 2, O}, {4, 5,2}, {1, 0,- 2}};
By entering the command knot[trefoil] Mathematica™ constructs the @ot and
displays it in a graphics window. I have constructed several optimized polygonal knots,
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and included the first four (31, 41, 5; and 5) are in the back of this text. The vertices and
number of sticks for the other three knots are listed below

4, figure8 = {{1, 0, 3}, {4, 0, -1}, {1.85, 4.15, -1.9}, {5, 5, -2.5}, 2.5, 1, -1}, {0.5, 4, 1}, {3, 4, -3.5}

{1, 0, 3}}; constructed with 7 sticks. ,
5;: fiveone = {{1, 0, 0}, {4, 3, -0.5}, {0, 3, -1}, {3, 0, -0.5}, {2.5, 2, 1}, {2, 4, -3}, {1.75, 2.75, 0},

{1.5, 1.5, -1}, {1, 0, 0}; constructed with 8 sticks.
5¢: fivetwo = {{1, 0, 2}, {5, 3, -2}, {3.5, 4, 0}, {2, 3, 0.5), {4, 0, 0.5}, { 2.7, 1.5, -3}, {1, 3, 35}, {L.5,

4, 0}, {3, 3, 0.3}, {1, 0, 2}}; constructed with 9 sticks.

Each construction was done with strictly less than 2n sticks (except for the trefoil knot).
I will conclude with that. I have not been able to prove my conjectures in the general
case, and they are still open questions. But there is still progress to be made.
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