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Abstract

A discrete age-stage population model is proposed. The model is found

- to behave in many ways like the Leslie model. In particular, the charac-

teristic equation of the age-stage model is similar to that of the Leslie
model. Several results already proven for the Leslie model immediately

follow: A sufficient condition on non-zero birth rates is found for a stable

populatibn distribution. This distribution decreases exponentially with
age. Harvesting policies are also investigated, but few results are found.

1 Introduction

AAsimple, discrete time model which predicts the age distribution of a population
is the Leslie model. In matrix form, this model is givén by

x(t +1) = Lx(t)

where x(t) is an n-vector giving the number of individuals in each age class at
time t. L is a square matrix of order n. The first row of L contains the birth
rates for each age class, and the first subdiagonal contains the n — 1 survival
rates for each age class. L is called the Leslie matrix.

In practice, it is hard to determine the age of many organisms (fish, for
example). It is much easier to classify organisms by some other characteristic,
such as their size. A natural extension of the Leslie model, then, is to let x(t)
represent the number of individuals in each size class at time ¢. In this model,
an organism may grow from one size class to the next in one time period or
may remain in the same size class. However, because an organism may stay in
the same size class for an infinite amount of time, this model exhibits unusual

behavior in certain contrived situations.

2 Models

Consider a model in which the population is divided into age classes and size
classes. All new borns enter the world at age 1, size 1. In one time period,



an organism advances to the next age class and may or may not advance to
the next size class. Birth rates for each age-size combination are specified. A
graphic representation of this model (with K age classes and I < K size classes)
is shown below.

Age
K-1 K

== =

i | o

Figure 1: Representation of the age-size model
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Note that it is possible to prune this graph. For instance, for a given popu-
lation, it may be reasonable to assume that if an organism has not grown out
of size class 1 by age 5, the organism is dead. By pruning edges, it is possible
to restrict certain age-size combinations.

Let us call this the age-size model. It turns out that many properties of
the age-size model hold in more general situations. Therefore, I will consider
a generalization of this model (which I.call the age-stage model). The main
theorems of this paper will be proved for the age-stage model. They are hence
proved for the age-size model. .

Suppose we divide a population into K age. classes and L stage classes.
A stage class can represent any number of things. For example, a stage can
represent a size classification (as above). A stage class can represent a particular
~ body color of an organism, or a particular combination of size, body color, and
wing span, for example. Let the ordered pair (4, j) represent being in age class
i and stage class j. Let z;;(t) = the number of organisms in state (i,7) at time
t. Suppose that in one time period an organism advances to the next age class
(or dies) and can enter any of the L stage classes. Let gijr = the probability an
organism in state (4,7) enters state (i + 1, k). Suppose also that all organisms
are born into state (1,1). Let b;; = the birth rate of an organism in state (7, 7).
As before, we can represent this model graphically.
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Figure 2: Representation of the age-stage model

Let x(t) be a K L-vector in which z;;(t) is at row (i — 1)L + j. Let
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Note that there (L — 1) rows of all 0’s below the top row. Then,
x(t +1) = Mx(t) (1)

We can also consider M as a block matrix composed of K rows and K columns



of L x L matrices.
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Observe that in block form M looks like the Leslie matrix. Likewise, we can
consider x(t) as a block vector.

Xl (t) )
x(t) = : (4)
xg (t)
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3 Results

Let ;; be the probability an organism in state (1,1) reaches state (7,7). There
may be several ways an organism can reach state (3,7). For example, one way
to reach state (3,2) is to go from state (1,1) to (2, L) to (3, 2). There may also
be no way that an organism can reach state (¢, j) (in which case l;; = 0). Thus,

li; = Z probability of staying on path s (6)
3ESij

where S;; is the set of allpaths from (1, 1) to (4, 7). Let us define more explicitly
the notion of a path from (1,1) to (4,7). In words, a path (a) begins at state
(1,1), (b) ends at state (%, j), (c) leaves every state it enters (except state (%, 7)),
and (d) takes (i — 1) steps to get there. More explicitly:
A set Q represents a path from (1,1) to (3,7) iff Q satisfies the following.
(a) ezactly one of q1,1,1,91,1,2,* ", 91,1,L € @ o
(b) ezactly one of gi—1,1,4,Ti-1,25>" "> %i-1Li € @
. (C) V(x)y) Z) 76 (1' - l,yyj),llr,y,z € Q = 5Ia0t1y one Of qz+1,z,1, 9z+1,2,2, /
covy Qo41,2,0 € Q.

(@) 14 =11
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Figure 3: Sample transition matrix M — AI with K =4,L =3

3.1 Eigenvalues and Eigenvectors

Theorem 1 The characteristic equation ofM (defined by Mx = Ax) is

PIHIELE "
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Figure 3 is a sample transition matrix M — AI with K = 4,L = 3. The
reader, in following the proof, may find it useful to refer to this matrix as an

example.
Proof. Observe that:
1. b;j is at row 1, column (i —1)L+jof M
2. gijk is at row iL + k, column (i — 1)L +] of M

Let M/ =M — AL The row and column of an element will now always specify
the location of that element in M’. Expand M’ about the top row.

. K L
det(M’) = (=N)KE + > > (-1~ lb,] det(Apy) (8)

i=1j=1

where N = (i — 1)L + j (the column index of b;;) and Apy is the (KL — 1) x
(KL — 1) submatrix of M’ obtained by deleting the N'th row and Nth column

of M’.
det(Apy) = (=)%Y det(B) 9)



where B is an (N — 1) x (N — 1) submatrix of M’ (rows 2 through N, columns 1

through N —1). A standard definition of the determinant is used in calculating

det(B). : '
Definition: Let A = [a;;] be an n X n matrix. Then

det(A) = ) %a15,a275 ***njn ‘ (10)

where the summation ranges over all permutations jijz -« -jn of the set S =
{1,2,---,n}. The sign is positive if the permutation jij2---jn has an even
number of inversions, odd otherwise.

I will take a permutation of a matrix A (n X n) to mean a set of n elements
of A such that no two of them are in the same row or column. A non-zero
permutation is one with no zero elements. Hence,

det(A)= > =[] (11)

PeP s€P

where P isthe set of all permutations of A.

Consider a non-zero permutation P of B. Elements in P will be either some
gzyz or —A. To keep track of which —X’s are which, denote A; to be the A at '
row ¢, column ¢. Divide P into two sets, P = P, U P,, where

Pq = {‘nyZqu‘yz € P}

P\ = {/\tl)\t € P}

Definition: A permutation P represents a path from (1,1) to (4,7) iff P, repre-
sents a path from (1,1) to (Z,0- .

Claim I: Every path from (1, 1) to (3, j) is represented by a unique, non-zero
permutation of B.

Suppose we are given a path from (1,1) to (i,7). We want to find a per-
mutation of B that represents this path. Since the elements in a path all have
different age componenets, it is easy to see that the corresponding elements in
B have no rows or columns in common. Since there are (i — 1) such elements,
it suffices to find (N — 1) — (i — 1) other non-zero elements in B with no rows or
columns in common with these or with each other. The other elements in the
permutation must be —A’s (otherwise, the permutation would not represent a
path, by violation of property (d)).

Suppose the given path is represented by:

{‘Illau g2s133: 9383283 ** 1 §i—2,8i-3,3i-21 qi-‘-l,si-a,j}
These elements are in rows:

L+31,2L+52,3L+53,~--,(i—2)L+s,-_2,(i—1)L+j

6



and in columns: .
1,L+51,2L+82;---,(i —3)L+ S,'_3,‘(2.—2)L+S,'_2

Observe that the row of one edge is equal to the column of the next edge.
Also, there are (N —2) —A’s in B (which appear in every row and column
of B except column 1 and except row N = (i — 1)L + j). Hence, there are
(N —2)=[(i —1) = 1] = (N — i) —X’s left which have no rows or columns in
common with the elements of the path. Hence, we have found a permutation
which represents the given path. Further, since there are ezactly (N —1) —A’s
from which to choose (N — 1), this permutation is unique.

Claim 2: Every non-zero permutation P of B represents a path from (1, 1)
to (1,7) (This is the converse of claim 1).

Suppose P is a non-zero permutation of B. It suffices to show that P satisfies
properties (a) through (d) (mentioned previously).

(a), (b) Exactly one non-zero element from column 1 is in P, and exactly
one non-zero element from row N is in P. In B, there is no —A in column 1
or in rtow N. The only elements in B in column 1 are g111,- -, q11z- The only
elements in B in row N are ¢;—1,1j," ", %i—1,L,j-

(c) Suppose qzy: ((2,v,2) # (i —1,4,§)) € P. dqoyz is in row zL + 3.
Also, exactly one non-zero element of B from column zL +y is in P {(but it
cannot be Ayp4y, because it is in row zL + y). The only other choices are
Qz+1,9,1,° s dz+1,y,L- )

(d) We must show |P,| = i — 1. Clearly, A, -+, Az € P. Therefore, exactly
one element of Q7 (equation (3)) is in P (namely g114 for some d). This implies
that Apy1,AL+2,+ -+, A2z, € P, except Arta- Therefore, exactly one element of
Qo is in P, and so on. Exactly one element of each Qq,---,Qj_1 Is in P. So,
|Pl=1-—-1. = :

Claim 3: The number of inversions in a non-zero permutation of B is (N —1).

Definition: the number of inversions in a permutation is the number of pairs
of elements in the permutation for which column(eltl) < column(elt2), but
row(eltl) > row(elt2). o

Consider a non-zero permutation P. Observe that no two elements of P, are
inverted and no two elements of Py are inverted. Therefore, the only possible
inversions occur between an element in P, and an element in Py.

Consider some A; € Py () is at row ¢, column ¢, (2 <t < N)). We wish to
find all elements ¢y, € P, such that column(gzy;) < t and row(gzy;) > t. Pick
zyz € Py such that column(gzy;) < ¢, but for any other element ¢q3c € Py, if
column(gase) < t, then column(gase) < column(gzy.). Because there is at least
one element in P, whose column is less than ¢ (that is, one element is at column
1< 2<t), such a gzy, can always be found.

Observe that row(gzyz) = column(gs41,z,2), Which by choice of ¢zy- must be
greater than z. So, gzy: is inverted with );. Using this observation (that'in a

o



non-zero permutation of B, the row of one element is the column of the next),
it can be shown that no other elements in P, are inverted with A;. Hence, every
A: € P, is inverted with exactly one element gzy, € P,. Therefore, the number
of inversions of P is |P\| = N —i. '

Claims 1, 2, and 3 prove a one-to-one, onto correspondence between non-zero
permutations of B and paths from (1,1) to (7, 7). From (11),

det(B) = > (-1)=D(=0)V IT s = 20

PeP sEP,

Substituting into (9),
det(Apy) = (—1)FE-NAEL=MHIN=0,;

Substituting into (8),
’ K L ;
det(M') — (_A)KL + ZZ(“l)___(N—1)+(KL—N)bij)\KL_i1ij =0

i=1j=1

K L p..1.
il
= Z —/\‘—— =1
i=1j=1
Theorem 2 Consider S = {i|(1 < i < K),bijlij > 0 for some 1 < j <'L}.
If the greatest commond divisor of the elements in S is 1, then M has a single
positive, real eigenvalue and this eigenvalue 15 strictly greater in magnitude than

all other eigenvalues of M. -

This result applies if, for example, bas > 0, bz > 0, all other b;; = 0, and
Iss > 0,131 > 0, but not if lss = 0 or I3y = 0. This result does not apply if, for
. example, bgl, coe,bag > 0,b41,-++,bsr, > 0, and all other b;; = 0.

Proof: Let
L

&= bijhi

i=1
Note, d; > 0 iff i € S. Then, the characteristic equation is
K d; :
o=l
i=1
Observe the similarity to the characteristic equation of the Leslie matrix:

- bl
p\

i=1

=1



It has been shown for the Leslie matrix L that if the greatest common divisor of
{i]b; > 0} is 1 (note that I; always > 0), then L has a real, positive eigenvalue
that is largest in magnitude. The proof that this result is true when g.c.d
{i]d; > 0} = 1 is identical (see Cull, 1973, pp. 649-650 or Getz and Haight,
1989, pp. 40-42).

An extension of the age-stage model is to let organisms be born into all
stage classes (not just stage 1). In this way, some type of genetic structure
can be built into the model. For example, large organisms might give birth to
large children, and small organisms might give birth to small children. A simple
example shows that the previous results do not apply. Consider a population
with 1 age class and 2 size classes. Suppose all organisms in stage 1 give birth -
to 1 child in stage 1, and all organisms in stage 2 give birth to 2 children in

_ stage 2. Then,
, 1
=[]

The characteristic equation does not satisfy theorem 1. Also, M has more than
one real, positive eigenvalue.

The eigenvector associated with the dominant eigenvalue can be found. This
eigenvector gives the distribution of the population which is approached asymp-
totically. Consider M’ as a block matnx composed of K rows and K columiis

of L x L matrices. ‘
By - Bg B
w=| T | (12)
Qg-1 —AM

Where Bj;, Q; are given by (3). Also, consider x(t) as a block vector given by
(4) and (5). An elgenvector satisfies ,

M'x(t) =0
Multiplying out the top row gives
K
ZBixi(t) = A]'_xl (t) _ ) (13)
i=1

This implies that z1; is unconstrained and all other z;; = 0. Multiplying out
the other rows gives :

Qi—lxi—l(t) — )«Ixi(t) =0 (14)
o xi(t) = Qi—l’f\i-l(t) _ Qi_IQi};z“'lei(t) (15)



Let z1; = 1. Then, from (15)

. li; v ‘

:E;j = Ti- ) (16)

The stable population distribution decays exponentially with age (as it does in
the Leslie model). '

3.2 Harvesting

Beddington and Taylor (1973) proved that the optimal harvesting policy for the
Leslie model involves partial harvesting of one age class and complete removal
of another (thus reducing the maximum age of the population). An optimal
harvesting policy is defined to be a policy which harvests the greatest percentage
of the total population while maintaining equilibrium.
' A similar result holds for the age-stage model. Suppose allowable harvesting
policies consist of removing a fixed percentage (0 < h; < 1) of organisms from
each age class. Then, it can be shown, using Theorem 1 and an argument
identical to Beddington and Taylor’s, that the optimal harvesting policy for
the age-stage model involves partial harvesting of one age class and complete
removal of another.

However, this is not a very interesting result, since, as stated earlier, it
may be difficult to harvest a population based upon the age of organisms. A
more interesting question considers the effects of harvesting a fixed percentage
(0 < h; < 1) of organisms from each stage class.

Figure 4: Counter-example for age-stage model

A simple counter-example shows that harvesting two stage classes is not
always optimal. Consider a population modelled by the graph in figure 4. Sup-
pose each organism in state (1,1) gives birth to 1 organism (b11 = 1, all other
b;j = 0). Then, the optimal policy harvests all of stages 2, 3, and 4.

.

10



The same problem was investigated for the age-size model. This model
is more similar in structure to the Leslie model in the sense that organisms
progress through size/age classes in sequential order and cannot skip between
stages. This property might lend the model to a proof (similar to Beddington
and Taylor’s) that two-stage harvesting is optimal. However, no proof nor any
counter-example was found. ‘ ‘
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