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Abstract

The purpose of this paper is to investigate, via methods generally falling under “probabil-
ity on trees”, critical phenomena in stochastic cascade models of Yule type, and to apply these
methods to the problem of uniqueness and nonuniqueness of solutions to the linear pantograph
and non-linear ω-Riccati mean flow equations. For linear equations, Feller’s classic discovery
of the relationship between critical stochastic explosion phenomena for Markov processes and
uniqueness and nonuniqueness of solutions to the associated Kolmogorov equation partly il-
lustrates the spirit of the present paper. The connection between shocks in Burgers equation
and statistical phenomena of spontaneous magnetization criticality discovered by C.M. New-
man (1986) provides an illustration of another type; see [6,9,21]. New methods are introduced
to mathematically explore the effects of stochastic critical phenomena, e.g., stochastic explo-
sion, hyperexplosion, t-leaf percolation, on the mean flow. In particular, stochastic (cascade)
recursions, stochastic Picard iterations and additive transforms are developed which, in certain
critical parameter regimes, are shown to lead to a ‘one-to-many principle’ for solutions to the
ω-Riccati equation and a corresponding pantograph equation, related by linearization. The de-
velopment also includes an application of Feller’s classical theory of jump Markov processes
to a certain class of pantograph equations that appears to be new.
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1 Introduction and Preliminaries
The seminal paper by Kato and McCleod [18] revealed the fascinating nature of regularity in the
form of well-posedness (uniqueness/non-uniqueness) phenomena for the classic one-dimensional
pantograph linear differential equation given, for parameter ω > 0, real coefficients a, b, (a ↓= 0)
and initial value u0, by

u→(t) = bu(t) + au(ωt), t > 0, u(0) = u0. (1.1)

Perhaps less surprising, yet striking, revelations were shown by Athreya in [2] to occur for the
ω-Riccati* one-dimensional non-linear differential equation given, for parameter ω ↔ 0 and initial
value u0, by

u→(t) = ↗u(t) + u2(ωt), t > 0, u(0) = u0. (1.2)

The pantograph equation (1.1) enjoys a remarkablemnumber of diverse applications in statistical
physics, applied mathematics, analysis, number theory, graph theory and combinatorics, e.g., see
[23] and references therein. Similarly, the ω-Riccati equation (1.2) appears as a model for data

compression in [1], cellular senescence in [3], and fluid flow in [8, 11, 12, 14].
The interest in these equations by the present authors is mostly based on a mean-field heuristic

(see [14], p.55) in which the ω-Riccati equation results from self-similar/rotational symmetry and
scaling considerations of the three-dimensional incompressible Navier-Stokes equations. The es-
sential idea is derived from the random cascade discovered by [19] for the mild form of the Fourier
transformed equations. Namely, in allowing for possible stochastic explosion by suppression of

*The term ω-Riccati was introduced by the authors in deference to the standard Riccati equation (ω = 1). The
corresponding stochastic model is sometimes also referred to as the Aldous-Shields model [3, 15], generalized Eden

growth [16], discounted branching random walk [2], or an inhomogenous Yule model as here. The differential equation
appears to have otherwise been nameless in the existing literature.
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their coin-toss mechanism, the ω-Riccati equation is obtained for their self-similar probability ker-
nel 1

ε3|ϑ|2 , ε ↑ R3\{0}, by replacing the random multiplicative factors by the parameter ω, and
replacing the bilinear vector product at branching by ordinary multiplication.

Likewise, the pantograph equation (1.1), with b < 0 can be viewed as a linear counterpart of
the ω-Riccati equation. Indeed, via a change or variables, (1.1) can be written in the form

u→(s) = ↗u(t) + au(ωt), t > 0, u(0) = u0, (1.3)

which admits a stochastic structure similar to that of (1.2), except the product at branching is
replaced by a weighted sum. Alternatively, the linear nature of (1.3) allows a stochastic cascade
approach based on a unary tree structure, placing it within a more classical framework of jump
Markov processes and associated Kolmogorov backwards equations, as shown in Section 2.

In Section 4 we will investigate several critical phenomena related to the above-mentioned
stochastic structures viewed via a general framework of the Doubly Stochastic Yule (DSY) pro-
cesses introduced in [11, 12]. We particularly focus on the size of the t-leaf sets and on existence
of so called hyper-exploding subtrees of DSY trees – properties that will be crucial in establishing
the richness of non-uniqueness of the solutions for both (1.3) and (1.2). In particular, the critical
nature of the case ω = 2 is revealed within the explosion range ω ↑ (1,↘).

For the sake of clarity, unless otherwise stated, by solutions, we mean global solutions to the
initial value problems (1.2) or (1.3), i.e. solutions that exist for all t > 0 and satisfy the initial
condition as t ≃ 0. Note that such solutions are necessarily C↑ on t > 0 (in fact, if ω ↑ (0, 1],
the solutions are analytic).

In Section 5 we describe the key approach – the stochastic Picard iterations used to build so-
lution processes whose expectations solve the integral form of (1.3) and (1.2). This approach is
inspired by a martingale technique of [19] for uniqueness of solutions to the Navier-Stokes equa-
tions in appropriate functional setting, and was first introduced in [14] and subsequently exploited
in [10] to prove several existence and non-uniqueness results for Cauchy problems for pde’s related
to the 3d-incompressible Navier-Stokes equations.

Note that in the the case a = 2, (1.3) is a linearization of (1.2) around the steady state u = 1,
In Section 6 we will establish a connection between (1.2) and (1.3) with a = 2 at the level of

stochastic structures that allows not only to deduce the existence of non-unique solutions of (1.2)
for a range of initial data, but also to determine their long-time behavior.

Finally, in Section 6.1 we present several numerical simulations illustrating the results of Sec-
tion 6.

Equations (1.3) and (1.2) primarily serve as mathematical surrogates† for aspects of the regu-
larity theory of differential equations amenable to probabilistic methods of analysis. In particular,
certain critical phenomena associated with the stochastic model are shown to have significant con-
sequences for the regularity of these equations.

While the focus of this paper is on the equations (1.3) and (1.2), the broader purpose is to
illustrate an emerging theory for classes of non-linear partial differential equations of the type
represented by the incompressible Navier-Stokes equations based on contemporary methods from

†Here “surrogate model” is intended to be in the spirit of the idealized Ising model in statistical physics, logistic
model in population biology, discrete Gaussian free field in quantum field theory, etc.
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“probability on trees”, e.g. see [20]. In particular, such notions of stochastic explosion, hyper-

explosion, t-leaf percolation criticalities, and methodologies of stochastic Picard iteration
‡

from

ground states, stochastic transformations and a one-to-many solution principle are introduced and
applied to the pantograph and ω-Riccati equations.

The main results begin with a new,§ albeit constrained approach to (1.3) based on self-similarity
and Feller’s classical theory of Markov processes and semi-groups in the next section. This also
motivates a transition to a less constrained approach via probability on trees. From here the remain-
der of the paper is devoted to the development of special techniques to analyze the well-posedness
of these equations. In comparison with Kato-McLeod [18], we show existence of a family of so-
lutions to pantograph (for any given initial data) with ω > 1, a > ↗b > 0 that have an algebric as
t ≃ ↘, see Theorem 3.5.

2 Self-Similarity and Probability on Trees
The main idea behind stochastic representations of solutions of equations such as (1.3) and (1.2),
is that their mild-type formulation can be connected to the expected values of certain progressively

measurable stochastic processes – solution processes defined on a suitable probability space.
The ”self-similar” nature of both pantograph and ω-Riccati equations is revealed by consider-

ation of the following evolution PDEs:

ϑv

ϑt
(ϖ, t) = ↗ϖv(ϖ, t) + aϖv(ωϖ, t), ϖ > 0, t ↔ 0, v(ϖ, 0) = v0(ϖ) (2.1)

and
ϑv

ϑt
(ϖ, t) = ↗ϖv(ϖ, t) + ϖv2(ωϖ, t), ϖ > 0, t ↔ 0, v(ϖ, 0) = v0(ϖ). (2.2)

We refer to these equations as the space-time counterparts of (1.3) and (1.2), respectively. The
use of the parameter ϖ ↑ (0,↘) is intentional, as it is merely a mathematical label without special
physical significance otherwise. However, one can view (2.1) and (2.2) as a non-local differential
equation in Fourier space with ϖ = |ε|.

The system (2.1) has a natural symmetry: if v(t, ϖ) is a solution, then vϖ(t, ϖ) = v(ϖ/ϱ,ϱt) is
also a solution. This permits one to consider solutions of the self-similar form v(ϖ, t) = u(ϖt),
where the product s = ϖt defines a similarity variable, and u solves (1.3) and (1.2), respectively.

It is often convenient to express the space-time equations (2.1) and (2.2) in an integral form as
follows:

v(ϖ, t) = e↓ϱtv0(ϖ) + a

∫ t

0

ϖe↓ϱsv(ωϖ, t↗ s)ds, ϖ > 0, t ↔ 0. (2.3)

and

v(ϖ, t) = e↓ϱtv0(ϖ) +

∫ t

0

ϖe↓ϱsv2(ωϖ, t↗ s)ds, ϖ > 0, t ↔ 0. (2.4)

‡A familiar, though mostly unrelated, application of stochastic Picard iteration is in proofs of existence and unique-
ness of solutions to stochastic differential equations with Lipschitz coefficients.

§As far as the authors can determine, this approach to well-posedness via self-similarity and Feller’s jump Markov
process theory appears to be new for the pantograph equations.
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Note that self-similar forms of (2.3) and (2.4) are the corresponding mild-type formulations of
(1.3) and (1.2):

u(t) = e↓tu0 + a

∫ t

0

e↓su(ω(t↗ s))ds, ϖ > 0, t ↔ 0. (2.5)

and

u(t) = e↓tu0 +

∫ t

0

e↓ϱsu2(ω(t↗ s))ds, ϖ > 0, t ↔ 0, (2.6)

where u(s) = v(ϖ, t)|ϱ=1,t=s = v(ϖ, t)|ϱ=s,t=1, u0 = v0(1), for a self-similar solution v to (1.3) and
(1.2), respectively.

2.1 A Probabilistic Framework for the Pantograph Equation
The self-similar embedding of the classic pantograph equation into a space-time pantorgraph equa-
tion yields a probabilistic framework in which one may view (2.1) as a Kolmogorov backward
equation for a jump Markov process. To keep the comparisons simple, let us assume a = 1, and
v0 = 1 in (2.3) and (2.5) for now. Then, in this case, the corresponding Markov process holds in
state ϖ ↔ 0 for an exponential time of intensity ϱ(ϖ) = ϖ, 0 being absorbing, before transitioning
to state ωϖ, i.e., with transition probability kernel k(ϖ1, dϖ2) = ςωϱ1(dϖ2). The constant solution
v(ϖ, t) ⇐ 1 for all ϖ, t ↔ 0 is obviously a solution (for v0 = 1), and is unique if and only if there is
no explosion. Now, the jump Markov process starting at ϖ > 0 is clearly explosive if and only if
ω > 1 since the mean time between the n-th and (n+ 1)-st jumps is 1

ϱωn for n ↔ 0. In fact, in this
case for any initial state ϖ the explosion time random variable S̃ϱ =

∑↑
j=0

Tj

ϱωj < ↘ a.s. (here {Tj}
are iid exponential random variables with intensity 1, Tj

ϱωj representing the time between jumps j
and j + 1). Accordingly, for ω > 1 the minimal jump process may be continued beyond explosion
time by absorbing the process in an adjoined spatial point at infinity. From here it is standard
Markov process theory, e.g., see [4, 5], that this transformation does not alter the infinitesimal be-
havior of (2.1) with a = 1. In particular, the equation is satisfied by the substochastic transition
probabilities p(1; ϖ1, dϖ2) of the minimal process and, hence,

u(s) = v(ϖ, t)
∣∣
ϱ=s,t=1

=

∫

[0,↑)

v(ϖ2, 0)p(1; s, dϖ2) = p(1; s, [0,↘)) < 1

is a so-called minimal solution to (2.5) (and, consequently, for (1.3)) with a = 1, u0 = 1, which in
the case ω > 1 is distinct for the steady state u ⇐ 1. Note also that this minimal solution has an
explicit representation in terms the aforementioned explosion time S̃ϱ=s =

∑↑
j=0

1
sωjTj:

u(s) ⇐ Pϱ=s(S̃s > 1) =
↑∑

n=0

n∑

j=0

e↓ωjsωj↓n

∏
k=0,n
k ↔=j

(1↗ ωj↓k)
. (2.7)

The series expansion is the complementary cdf for an infinite sum of independent exponentially
distributed random variables with distinct intensities ωjs, j = 0, 1, . . . for ω > 1; see ([17], p.40,
#12) for convolution formula for non-identical exponential distributions. Using this, (2.7) follows
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from the following calculation of the distribution of the number Ñϱ(t) of clock rings by time t with
initial state ϖ by setting t = 1, ϖ = s:

P
(
Ñϱ(t) = n

)
= P

(
n∑

j=0

1

ϖωj
Tj > t

)
↗ P

(
n↓1∑

j=0

1

ϖωj
Tj > t

)

=
n∑

j=0

e↓ωjϱt

∏
k=0,n
k ↔=j

(1↗ ωj↓k)
↗

n↓1∑

j=0

e↓ωjϱt

∏
k=0,n↓1

k ↔=j

(1↗ ωj↓k)

=
n∑

j=0

e↓ωjϱtωj↓n

∏
k=0,n
k ↔=j

(1↗ ωj↓k)
. (2.8)

The formula (2.7) is equivalent to the series expansion obtained in the aforementioned paper [18]
by analytic methods in the cases that one may exchange the order of summation there.
Remark 2.1. In the non-explosive case ω < 1, it follows from uniqueness of solutions to the
backward equation that the sum over all n in (2.8) is identically one for all t ↔ 0. This is obvious in
the case ω = 1 since the convolution of identical exponential distributions is a Gamma distribution
and the formula (2.8) is a Poisson distribution. However the sum over n is strictly less than one for
all t, ϖ > 0 if ω > 1.

More generally, if the coefficient 0 < a → 1 in (1.3) and (2.3), then consider the jump Markov
process on the compactified half-line [0,↘] with ϱ(ϖ) = ϖ, ϖ < ↘, ϱ(↘) = 0, k(ϖ1, dϖ2) =
aς{ωϱ1}(dϖ2) + (1 ↗ a)ς{↑}(dϖ2) on [0,↘) and k(↘, dϖ2) = ς{↑}(dϖ2), i.e., ↘ is absorbing. By
the same arguments as above with initial data v(ϖ, 0) = 1, ϖ ↑ (0,↘), v(↘, 0) = 0, one obtains the
pantograph equation for self-similar solutions v(ϖ, t) vanishing at ϖ = ↘. (Note that the constant
u ⇐ 1 is no longer a solution to the pantograph equation for a ↓= 1.) For a = 1 this coincides
with the previous treatment, however if 0 < a < 1 then almost surely there can only be finitely
many finite jumps before a transition to infinity occurs, regardless of the value of ω > 0. That is,
stochastic explosion has probability zero and the unique solution to (1.3) with u0 = 1 is given by

u(s) = p(1; s, [0,↘)) =
↑∑

n=0

an
n∑

j=0

e↓ωjsωj↓n

∏
k=0,n
k ↔=j

(1↗ ωj↓k)
(2.9)

Also, since ϱ(0) = 0 implies that 0 is an absorbing state, in the case that u0 = 0 the solution
so obtained is the identically zero solution.

The above assumptions on the coefficients a, b in (1.1) are clearly an obstruction to an analysis
of the full problem. However, in view of the Hille-Yosida theorem, some restriction is intrinsic to
Feller’s semigroup theory underlying the approach.

A closer look at the underlying stochastic structure, however, reveals a naturally occurring
rooted unary tree with label ϖ = s > 0, consisting of above-mentioned i.i.d. mean one exponen-
tially distributed random variables {Tj} scaled by 1

ωjϱ to have intensities ωjϖ. In particular, one
may take ϖ = 1 to obtain the self-similarity parameter is ϖt = t. See Figure 1 for a realization
of this unary tree. This provides a gateway to an approach in which the tree is used to define a
stochastic recursion underlying (1.3) with the constraint 0 < a → 1 removed. Namely, let us

6



Figure 1: Pantograph unary tree

define a (unary) stochastic solution solution process for (1.3) as a stochastic process X̃ satisfying
the recursion

X̃(t) =

{
u0 if T0 ↔ t

aX̃(ω(t↗ T0)) if T0 < t.
(2.10)

By conditioning on T0, it is simple to check that u(t) = E(X̃(t) [S̃>t]) satisfies (2.5), and thus
provides a self-similar solution to (2.1), when the expectation exists. Here, as before, S̃ = S̃ϱ=1 is
the explosion time (from the initial state ϖ = 1):

S̃ =
↑∑

j=0

Tj

ωj
(2.11)

Iterating this recursion the non-explosion event [S̃ > t], one obtains

u(t) = E(u0 a
Ñ(t)

[S̃>t]) = u0

↑∑

n=0

an
n∑

j=0

e↓ωjtωj↓n

∏
k=0,n
k ↔=j

(1↗ ωj↓k)
, t > 0, (2.12)

Where Ñ(t) = Ñϱ=1– is the number of clock rings before time t in the unary tree. Under the
assumption that ω > max{|a|, 1}, this double series can be rearranged into

u(t) = u0 ca,ω

↑∑

n=0

ane↓ωnt

∏n
j=1(1↗ ωj)

(2.13)

where

ca,ω =
↑∑

n=0

an

ωn
∏n

j=1(1↗ ω↓j)

In this formula, the standard convention that
∏0

j=1 = 1, is used. The formula (2.13) is also ob-
tained in [18] by analytic methods. Note in particular that the complementary distribution function
G(t) = P(S̃ > t) is given by

G(t) = Cω

↑∑

n=0

e↓ωnt

∏n
j=1(1↗ ωj)

, Cω =
↑∑

n=0

1

ωn
∏n

j=1(1↗ ω↓j)
(2.14)

7



Remark 2.2. For 0 < a < 1 the tree probability recursion may be modified as

X̃(t) =






u0 if T0 > t

0 if C = 0, T0 < t

X̃(ω(t↗ T0)) if C = 1, T0 < t,

(2.15)

where C ↑ {0, 1} is a Bernoulli fair coin tossing random variable independent of the holding time
T with P(C = 1) = a. In this iteration an explicitly represents the probability of n clock rings prior
to absorption at 0. In particular, note that the stochastic recursion does not require compactification
of the half-line.

2.2 Probabilistic Framework for ω-Riccati Equations.
In the case of the ω-Riccati equation in mild form (2.6), a stochastic solution process may be
similarly defined by a recursion on the binary tree by

X(t) =

{
u0 if Tς ↔ t

X(1)(ω(t↗ Tς)X(2)(ω(t↗ Tς)) if Tς < t,
(2.16)

where Tς is the root clock distributed exponentially with intensity 1, and X(1), X(2) are (condition-
ally on Tς) independent copies of X re-rooted at (1), (2), respectively.

One may note that the (binary) stochastic solution process for the pantograph equation (2.5)
may also be defined on a binary tree via

X(t) =

{
u0 if Tς ↔ t
a
2X

(1)(ω(t↗ Tς)) +
a
2X

(2)(ω(t↗ Tς)) if Tς < t,
(2.17)

where X(1),X(2) are conditionally on Tς independent copies of X re-rooted at (1), (2), respectively.
Let us introduce a bit of binary tree notation. Let T = {φ}

⋃
(⇒↑

n=0{1, 2}n) be a binary tree
rooted at φ. For a vertex v = (v1, . . . , vn) ↑ T, let |v| = n, v|j = (v1, . . . , vj), j = 1, . . . , n,
v|0 = φ. Also, denote by ⇑↗v = v|(|v|↗ 1) – the parent of a vertex v ↑ T \ {φ}.

The essential ingredients underlying the definition of the stochastic solution processes is a tree-
indexed family Y = {Yv := ω↓|v|Tv : v ↑ T}, where Tv, v ↑ T are i.i.d. mean one exponentially
distributed random variables defined on a probability space (!,F , P ), and a multiplicative scaling
parameter ω > 0. See Figure 2 for a realization of this binary tree. We refer to Y as inhomogeneous

Yule random field based on its implicit role in the classic Yule counting process when ω = 1. In
view of the representation of solutions as expected values of the solution process (2.16) and (2.17),
the equations (2.5) and (2.6) are, respectively, referred to as the mean flow equations. From a
perspective of self-similarity, in which t is viewed as the self-similarity parameter, the rescaling
by ω at each exponential clock ring correspond to spatial transitions of labels ϖ ≃ ωϖ in (2.3) and
(2.4).
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Figure 2: Binary tree corresponding to the ω-Riccati Equation

3 Non-uniqueness of Solutions to the Pantograph Equation via
Unary Solution Processes

We start with the following result about existence and uniqueness of solutions for (1.3) that follow
directly from discussions in Section 2.1.

Proposition 3.1. When ω > max{1, |a|}, for any initial data u0 ↑ R the minimal solution u(t) to

(1.3) defined by (2.12) satisfies

lim
n↗↑

|u(t)|
e↓t

= u0ca,ω. (3.1)

Moreover, if ↗1 < a → 1, then for any initial data u0, the initial value problem for pantograph

equation (1.3) has:

(i) a unique globally bounded solution if a = 1 and ω ↑ (0, 1] or if |a| ↑ (0, 1) and ω > 0.

(ii) infinitely many globally bounded solutions when ω > 1, a = 1.

Proof. In case ω > 1, the minimal solution is given by (2.13), which yields (3.1).
Note that in the case |a| → 1, the minimal solution (2.12) is globally bounded.
In the case a = 1, (1.3) coincides with (2.7), as we noted earlier, u(t) ≃ 0 as t ≃ ↘

is a distinct solution corresponding to u0 = 1, in addition to the steady state 1. By linearity,
this already implies non-uniqueness of bounded solutions for any u0 ↓= 0. In the case u0 = 0,
consider w(t) = 1 ↗ u(t) (u(t) is still given by (2.7)). Note that w is a bounded solution to (1.3)
corresponding to u0 = 0, distinct from the steady state 0. Thus, for any ϱ ↑ R, ϱw(t) is also a
bounded solution corresponding to u0 = 0. This result transfers to arbitrary u0 via linearity.

To prove uniqueness in the non-explosive case (0 < ω < 1), let v(t) be a solution to (1.3),
v(0) = u0, |v(t)| → M for all t ↔ 0. Let X̃0(t) = v(t). For all n ↑ N consider the iterative scheme

X̃n(t) = v (ωn(t↗”n↓1(t))) a
n

[!n<t] + u0a
Ñ(t)

[!n→1↘t],

9



where ”n =
∑n

j=0 Tj/ωj . Note that limn↗↑ ”n = S̃ a.s.. If ω → 1, S̃ = ↘ a.s., so X̃n(t) ≃
u0aÑ(t) a.s.. Likewise, if a < 1, on the event [S̃ > t], X̃n(t) ≃ X̃(t) = u0aÑ(t). Clearly,
for each n, E(|X̃n(t)|) → M + u0. In addition, X̃(t) = u0aÑ(t) satisfies (2.10), and therefore
u(t) = E(X̃(t)) is a well-defined solution of (1.3), and by the dominated convergence theorem,
vn(t) = E(X̃n(t)) ≃ u(t) as n ≃ ↘. Moreover, note that for all every n ↔ 1,

X̃n(t) =

{
u0 if T0 ↔ t

aX̃n↓1(ω(t↗ T0)) if T0 < t,
(3.2)

and therefore vn(t) = E(X̃n(t)) satisfies

vn(t) = u0e
↓t +

∫ t

0

e↓svn↓1(ω(t↗ s)) ds

Note that since v(t) solves (1.3), and v0 = v,

v1(t) = u0e
↓t +

∫ t

0

e↓sv(ω(t↗ s)) ds = v(t) .

Then, by induction, vn(t) = v(t) for all n. Hence v(t) = u(t), and we have uniqueness in the class
of bounded solutions.

Remark 3.2. In fact, in the case a = 1, ω > 1 Feller’s theory allows for a rich variety of non-
unique solutions for the same initial data simply by instantaneously reinitiating the underlying
Markov process at the successive times of explosion at a designated state ϖ ↑ R.

Remark 3.3. In fact, as shown in [18], globally bounded solutions exist for all ω > 0, ω, u0 ↑ R.

We can ”bootstrap” the previous result by integrating/differentiating (1.3).

Proposition 3.4. A solution u(t) to (1.3), with u0 = 0, is infinitely differentiable, and for each

integer n,

wn(t) =






u(t), if n = 0;
dn

dtnu(t), if n > 0; t

0

 t1
0 · · ·

 t|n|→1

0 u(s)dsdt|n|↓1 · · · dt1, if n < 0,

satisfy

d

dt
wn(t) = ↗wn(t) + aωnwn(ωt), u(n)(0) = 0. (3.3)

Moreover, for a > 0 and ω = a↓
1
n > 1 for some integer n → ↗1, (1.3) has infinitely many

solutions.

Proof. The smoothness of u(t) follows e.g. from the integral representations (1.3). For n ↔ 1,
iterated differentiation yields (3.3), and for n → ↗1, iterated integration yields the same. By
Proposition 3.1, in the case ω > 1, a = 1, there exist infinitely many solutions of (1.3). In the case
ω = a↓

1
n > 1, (3.3) transfers this non-uniques result to (6.1).

10



Thus, our next goal is to construct a solution process X̃≃(t) ↔ 0 of (2.10) that is not identically
zero. The relatively slow decay at infinity of E(X̃≃(t)) is exploited in an essential way to prove the
non-uniqueness result for (1.3) in Section 6.2.

Theorem 3.5. Let ω > max{|a|, 1}, a ↓= 0 and

↼ = ↼(a,ω) = log|a| ω =
ln |a|
ln ω

↑ (0, 1). (3.4)

Let

X̃≃(t) = X̃≃(t; a,ω) = (t↗ S̃)↓φ
[S̃<t], (3.5)

where S̃ is the unary explosion time given by (2.11). Then

(i) X̃≃ a.s. satisfies (2.10) with u0 = 0.

(ii) ↽(t) = E(X̃≃(t)) satisfies (1.3) with u0 = 0.

(iii) lim
t↗↑

↼(t)
t→ω = 1.

Proof. Let S̃(1) =
∑↑

j=1
Tj

ωj→1 and X̃
(1)
≃ (⇀) = (⇀ ↗ S̃(1)) [S̃(1)<↽ ]. Note that S̃ and S̃(1) as well as X̃

and X̃
(1)
≃ are identically distributed. We have

X̃≃(t) = (t↗ S̃)↓φ
[S̃<t] =


t↗ T0 ↗

1

ω
S̃(1)

↓φ

[T0+
1
ε S̃(1)<t]

=
1

ω↓φ

(
ω(t↗ T0)↗ S̃(1)

)↓φ

[S̃(1)<ω(t↓T0)]
= aX̃(1)

≃ (ω(t↗ T0)) .

Note that if T0 ↔ t, the calculations above yield X̃≃(t) = 0. Thus, X̃≃(t) in distribution satisfies
(2.10) with u0 = 0 and a = 2.

Using (2.14) one obtains that the pdf of the unary explosion time S̃ is given by

g(t) = ↗G→(t) = Cω

↑∑

n=0

ωne↓ωnt

∏n
j=1(1↗ ω↓j)

since differentiation can easily be justified. As a consequence, g(t)⇓Cωe↓t as t ≃ ↘, g(t) →
Ce↓t, ⇔t ↔ 0, and thus ↽(t) is well defined. The fact that ↽(t) satisfies (2.5) with u0 = 0, follows
from (2.10). More directly, note

↽(t) = E(X̃≃(t)) = E
(

t↗ T0 ↗
1

ω
S̃(1)

↓φ

[S̃(1)<ω(t↓T0)]

)

= ωφ

∫ t

0

e↓sE
(

ω(t↗ s)↗ S̃(1)
)↓φ

[S̃(1)<ω(t↓s)]


ds

= 2

∫ t

0

e↓s↽(ω(t↗ s))ds,

11



so ↽ satisfies (1.3).
To establish (iii), let ⇁(t) = t↓φ

t>0 and extend g by 0 on the interval (↗↘, 0). Then

↽(t) =

∫ t

0

(t↗ s)↓φg(s)ds =

∫ ↑

↓↑
⇁(t↗ s)g(s)ds

and
↽(t)

t↓φ
=

∫ ↑

↓↑

⇁(t↗ s)

⇁(t)
g(s)ds = E(Z(t))

where Z(t) = ⇀(t↓S̃)
⇀(t) [S̃<t]. Note that due to explosion, S̃ < ↘ a.s. and so limt↗↑ Z(t) = 1 a.s.

We will use uniform integrability to prove that E(Z(t)) ≃ E(1) = 1 by showing that there exists
p ↑ (1,↘) and C̃ > 0 such that

E(Z(t)p) → C̃ ⇔ t ↔ 1.

Fix p ↑ (1, 1
φ ). It suffices to show that lim supt↗↑ E(Z(t)p) < ↘. We have

E(Z(t)p) = E

⇁p(t↗ S)

⇁p(t)
1S<t


=

∫ t

0

(t↗ s)↓φp

t↓φp
g(s)ds

=

∫ t

0

s↓φp

t↓φp
g(t↗ s)ds → C

∫ t

0

s↓φp

t↓φp
e↓(t↓s)ds

= C

 t

0 s
↓φpesds

t↓φpet
.

By L’Hospital’s Rule,

lim sup
t↗↑

E[Z(t)p] → C lim
t↗↑

 t

0 s
↓φpesds

t↓φpet
= C lim

t↗↑

t↓φpet

t↓φpet ↗ ↼pt↓φp↓1et

= C lim
t↗↑

1

1↗ φp
t

= C.

The proof is complete.

Remark 3.6. An alternative proof of (ii) in Theorem 3.5 can be obtained using Karamata Tauberian
theorems since the Laplace transform of ↽ can explicitly be computed. However, the argument
using uniform integrability presented in the above proof is more direct.
Remark 3.7. Fix a > 0 and let ω > max{a, 1}. Consider the solution process X̃≃(t) = X̃≃(t; a,ω)
from Theorem 3.5 and ↼ = ↼(a,ω) as in (3.4). Then, for any ς ↑ (0, 1/↼), we have a⇁ < ω,
↼(a⇁,ω) = ς↼, and X̃≃(t; a,ω)⇁ = X̃≃(t; a⇁,ω), and thus

↽⇁(t) = E(X̃≃(t, ↼)
⇁)

satisfies (1.3) with u0 = 0 and a replaced by a⇁:

↽→⇁ = ↗↽⇁ + a⇁↽⇁(ωt), ↽⇁(0) = 0.

and
lim
t↗↑

↽⇁(t)

t↓φ⇁
= 1. (3.6)

12



Remark 3.8. Combining Proposition 3.1 and Theorem 3.5, we can conclude that when ω >
max{|a|, 1}, the initial value problem for (1.3) has infinitely many solutions that are globally
decaying in time.

4 ω-Riccati and Related Critical Phenomena
We start by defining several key notions describing the time evolution of the binary tree structure
corresponding to the inhomogeneous Yule random field Y underlying the ω-Riccati equation.

Note that the recursions (2.16) and (2.17) end at a vertex v ↑ T if and only if

|v|↓1∑

j=0

Yv|j < t →
|v|∑

j=0

Yv|j .

Recall, Yv|j = ω↓jTv|j , and thus can be viewed as branching clocks for the random field Y.

As in the case of the unary tree, let N(t) = |
o
V (t)| (see (4.2) below) be the number of clock

rings in the binary tree by time t. It was observed in passing in [1] and proven in [8] that for
ω = 1/2, the distribution of N(t)↗ 1 is Poisson distributed. It follows that X(t) defined by (2.16)
has a log-Poisson distribution. It is also to be noted that at least four interesting critical parameter
ranges, ω < 1,ω = 1, 1 < ω <

↖
2,ω >

↖
2, were identified in [1] for distinct qualitative changes

in behavior of the ω-Riccati model. In fact the ω-Riccati model has been shown to be a rich source
of critical phenomena on both large (averaged) and small (stochastic) scales. In particular, specific
critical regimes in the stochastic solution process that affect the averaging for solutions as expected
values are the subject of this section.

With the convention that
∑↓1

j=0 = 0, we define the continuous parameter Markov process of
sets of “t-leaves” by

ϑV (t) =




v ↑ T :
|v|↓1∑

j=0

Yv|j < t →
|v|∑

j=0

Yv|j




 , (4.1)

the corresponding set of ancestors by

o
V (t) =




u ↑ T :
|u|∑

j=0

Yu|j < t




 , (4.2)

and
V (t) =

o
V (t) ⇒ ϑV (t). (4.3)

Up to an explosion time S defined by

S = inf
s⇐∂T

↑∑

j=0

Ys|j, (4.4)
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V (t) takes values in a denumerable and partially ordered evolutionary space E of nonempty, finite,
connected, rooted at φ subtrees¶ of vertices of the binary tree T. Specifically, E may be viewed
inductively as consisting of finite trees A ↙ T such that A = {φ}, or there is a B ↑ E such that
A = B ⇒ {v1, v2} for some v ↑ B, with offspring v1, v2 /↑ B. Upon explosion the subtrees are
no longer finite nor binary, however with an extension to a space, say E , that permits infinite trees,
the evolution of V (t) naturally continues in E .

If one regards

”v =
|v|∑

j=0

Yv|j, v ↑ T, ”⇒↓
ς
= 0, (4.5)

as a replacement time of the vertex v, then v ↑
o
V (t) iff v dies prior to time t, and v ↑ ϑV (t) iff v

lives beyond time t, but its parent ⇑↗v dies prior to t. Upon replacement, a vertex v ↑ T branches
into two offspring v1, v2, respectively. So ”v is also referred to as the branching time of v. One
may say that “v ↑ ϑV (t) crosses t, while its parent ⇑↗v does not cross t”.

One may also note that prior to explosion of V (t) in the evolutionary space E at a possibly
finite time S < ↘, ϑV (t) is a finite set which evolves infinitesimly in time t to t + dt by removal
of a t-leaf v ↑ ϑV (t) and replacement by its offspring v1, v2. On the other hand, after explosion
the t-leaf process ϑV (t) continues to evolve in a canopy space C of nonempty cutsets of (possibly
infinite) subtrees induced by {Yv : v ↑ T} rooted at φ. In particular, at any time after explosion
of Y, the t-leaf set ϑV (t) remains well-defined, but may evolve to the empty set at possibly finite
time

L = sup
s⇐∂T

↑∑

j=0

Ys|j, (4.6)

an event referred to as hyperexplosion. In terms of the total time accumulated on a ray s ↑ ϑT,
”s =

∑↑
j=0 Ys|j , one may also write

S = inf
s⇐∂T

”s, L = sup
s⇐∂T

”s. (4.7)

The notations S and L for explosion and hyperexplosion times, respectively, are used to convey
‘shortest’ and ‘longest’ tree path lengths as measured by

∑↑
j=0 Ys|j, s ↑ ϑT.

Remark 4.1. The event [|ϑV (ϖ, t)| = ↘] cannot be ruled out apriori since there are explosive trees
for which this is possible (see Proposition 4.3 below).

In view of the binary tree structure, one has

|V (t)| = 2|
o
V (t)|+ 1, |ϑV (t)| = |

o
V (t)|+ 1 t ↔ 0, (4.8)

where, according to (4.1), the singleton root {φ} counts as a t-leaf with no ancestors if Tς > t.

Theorem 4.2 (see [2,14]). The ω-Riccati model is non-explosive for ω → 1 and hyperexplosive for

ω > 1.

¶A tree rooted at ε is a graph without loops and designated vertex ε as root. We identify such trees with their sets
of vertices.
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The following correction|| to Proposition 2.1 in [14] reveals a new critical phenomena of t-leaf

percolation in addition to another solution to ω-Riccati equations; namely the positive probability
of infinitely many t-leaves iff ω ↑ (1, 2).

Proposition 4.3 (t-Leaf Percolation, [13, 14]). (i) For ω ↑ [0, 1] ⇒ [2,↘) one has P(|ϑV (t)| <
↘) = 1 for all t ↔ 0. (ii) For 1 < ω < 2, one has P(|ϑV (t)| = ↘) > 0 for all t > 0.

More is actually true with regard to the distributions of the explosion time S and hyperexplosion
time L for ω-Riccati that improves on [2] as follows.

Proposition 4.4. For 0 < ω → 1, S = L = ↘ a.s.. For ω > 1, P(L > t) → P(S > t) = O(e↓
ε→1
ε t)

as t ≃ ↘. In particular, E(S) → E(L) < ↘.

Proof. The case 0 < ω → 1 follows from well-known properties of the standard Yule model.
Assume ω > 1. Let Mj = ω↓j max{T (j)

1 , . . . , T (j)
2j }, where T (j)

i , i = 1, . . . , 2j, j = 1, 2, . . . , are
i.i.d. mean one exponentially distributed random variables. Then,

Ln = max
|v|=n

n∑

j=0

ω↓jTv|j
dist
→

n∑

j=0

Mj, L = lim
n

Ln

dist
→

↑∑

j=0

Mj.

Also,

πj = P(Mj > ςj) = 1↗ P(Mj → ςj)

= 1↗ (1↗ e↓⇁jωj
)2

j

→ ej ln 2↓⇁jωj
. (4.9)

Fix t > 0. Note that
∑↑

j=0 πj → e↓t for ςj selected such that

ej ln 2↓⇁jωj → e↓t 1

c0(j + 1)2
, c0 = π2/6 > 1,

i.e., for a choice of

ςj ↔ ςj(t) =
t+ j ln 2 + 2 ln(j + 1) + ln c0

ωj
, j = 0, 1, . . . .

Moreover,
↑∑

j=0

ςj(t) =
↑∑

j=0

ω↓jt+
↑∑

j=0

j ln 2 + 2 ln(j + 1) + ln c0
ωj

= c1t+ c2,

where c1 =
∑↑

j=0 ω
↓j = ω

ω↓1 , and c2 =
∑↑

j=0
j ln 2+2 ln(j+1)+ln c0

ωj .
Now, note that L ↔ c1t+ c2 implies that for some n, Mn > ςn(t), and thus

P(L ↔ c1t+ c2) →
↑∑

j=0

P(Mj > ςj(t)) = e↓t.

||This correction is proven in the errata [13].
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Setting t→ = c1t+ c2, i.e., t = (t→ ↗ c2)/c1, one has

P(L ↔ t) → e↓
t→c2
c1 , ⇔t ↔ 0,

and the remaining statements of the proposition easily follow.

Theorem 4.5. A precise exponential rate of convergence holds for ω > 1:

P(L ↔ t) ⇓ e↓t
as t ≃ ↘, (4.10)

which is the same decay rate as P(S ↔ t). Moreover, if u(t) is a solution to ω-Riccati such that

u(t) ≃ 1 as t ≃ ↘, then only one of the following is possible:

(a) |u(t)↗ 1| ↭ t↓φ
, where ↼ = logω 2.

(b) |u(t)↗ 1| ⇓ e↓t
, or

(c) u(t) = 1 for all all t ↔ 0.

In the above, f(t) ↭ g(t) means that there exist c, T > 0 such that g(t) ↔ c2f(t) for all t ↔ T and

f ⇓ g means f ↭ g and g ↭ f .

Remark 4.6. The case (a) is illustrated by a special solution of [2]. Case (b) is illustrated by
u(t) = P(L > t), and case (c) by u(t) ⇐ 1.

The proof of Theorem 4.5 rests on the following lemma which couples the initial data 0 and
1 through the inclusion-exclusion principle. Namely, by inclusion-exclusion, w(t) = P(L → t)
solves (4.11) below with w(0) = 1.

Lemma 4.7. Assume ω > 1 in the ω-Riccati model. Suppose that w(t), t > 0 solves

w→(t) = ↗w(t) + 2w(ωt)↗ w2(ωt), t ↔ 0, (4.11)

and assume that |w(t)| = O(e↓φt) as t ≃ ↘ for some ↼ > 0.

(i) If 0 < ↼ < 1 then w(t) = O(e↓t) as t ≃ ↘.

(ii) If ↼ > 1 then w(t) ⇐ 0.

Proof. Part (i) is proven by a bootstrap method, starting from w(t) = O(e↓φt) by hypothesis, with
↼ ↑ (0, 1). Then, |2w(t)↗ w2(t)| → ce↓φt for large enough c = cφ . Using (4.11), one has

↗w(t)↗ c e↓ωφt → w→(t) → ↗w(t) + c e↓ωφt.

Integrating on [t0, t] one has

|w(t)↗ w(t0)e
↓(t↓t0)| → e↓t

∫ t

t0

esc e↓ωφsds

=
c

1↗ ω↼
e↓t


e(1↓φω)t ↗ e(1↓φω)t0


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so that as t ≃ ↘

|w(t)| =
{
O(e↓t) if ω↼ > 1

O(e↓ωφt) if ω↼ < 1.

In the case ω↼ > 1, the process stops and (i) is established, while in the case ω↼ < 1, the bootstrap
process is repeated with ↼ replaced by ω↼(> ↼). Note that each time the bootstrap process is
applied, another factor of ω appears in the exponent. Thus, after k steps with ωk↼ < 1,

w(t) = O(e↓ωkφt).

Now, for k ↔ ln( 1
ω )

ln(ω) the process stops and w(t) → O(e↓t) is achieved.
To prove part (ii), assume that |w(t)| = O(e↓φt), with ↼ > 1. By the same argument as above,

for c > 0 big enough and t > t0 > 0,

|w(t)↗ w(t0)e
↓(t↓t0)| → c

1↗ ω↼
e↓t


e(1↓φω)t ↗ e(1↓φω)t0


(4.12)

Note that if w(t0) ↓= 0, then |w(t) ↗ w(t0)e↓(t↓t0)| ↔ O(e↓t), while e↓t

e(1↓φω)t ↗ e(1↓φω)t0


=

O(e↓φωt) = o(e↓t), contradicting (4.12). This contradiction implies that w(t0) = 0 for all t0 > 0,
i.e. w(t) ⇐ 0.

Proof of Theorem 4.5. Let w(t) = 1↗ u(t), then w satisfies (4.11). Assume w(t) = o(t↓φ), Note
that (4.11) implies that

w→(t) = ↗w(t) + (2↗ w(ωt))w(ωt),

and thus

w(t) = w(t0) e
↓(t↓t0) +

t∫

t0

(2↗ w(ωs)) e↓(t↓s)w(ωs) ds. (4.13)

As in the proof of Theorem 9(ii) in [18], it then follows that |w(t)| = O(e↓εt) for some ε > 0. For
completeness, we will present this argument below.

For ⇀ > 0 consider
m(⇀) = sup

t↘↽
tφ|w(t)|.

Note that m(⇀) is a bounded decreasing to zero function. Moreover, from (4.13)

|w(t)| → t↓φ
0 e↓(t↓t0)m(t0) +m(ωt0)e

↓t

t∫

t0

(2 + |w(ωs)|) es(ωs)↓φds.

Let b ↑ (0, 1) be such that ▷ = b ↗ ω1/2 > 0. Fix a ⇀0 > 1 big enough that |w(t)| → t↓φ and
tφe↓t → e↓bt for all t > ⇀0. Then, for t > t0 > ⇀0 we have

tφ|w(t)| = t↓φ
0 e↓bt+t0 +m(ωt0) t

φe↓t

t∫

t0

es (2 + (ωs)↓φ)(ωs)↓φds.
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Using the estimate
 t

1 t
kesds → (1 + ck

t ) e
ttk (valid for any k ↑ R and big enough ck > 0), we

conclude

tφ|w(t)| = t↓φ
0 e↓bt+t0 +m(ωt0)

(
2ω↓φ

(
1 +

cφ
t

)
+ ω↓2φ

(
1 +

c2φ
t

)
t↓φ

)

→ t↓φ
0 e↓bt+t0 +m(ωt0)


1 +

C

t⇁


.

where ς = min{1, ↼}, and C > cφ big enough, independent of t. In the above, we used the fact
that 2ω↓φ = 1. Consider ⇀ = ω1/2t0 and take supt↘↽ in the right-hand side of the inequality above.
We obtain:

m(⇀) → t↓φ
0 e↓b↽+ω→1/2↽ +m(ω1/2⇀)


1 +

C

⇀ ⇁


= e↓▷↽ +


1 +

C

⇀ ⇁


m(ω1/2⇀) . (4.14)

We can iterate (4.14), by applying it to m(ω1/2⇀) in the right-hand-side (with ⇀ replaced with
ω1/2⇀ ), obtaining:

m(⇀) → e↓ε↽ +


1 +

C

⇀ ⇁

 
e↓▷ω1/2↽ +


1 +

C

(ω1/2⇀)⇁


m(ω2/2⇀)



→ e↓▷↽ +


1 +

C

⇀ ⇁


e↓▷ω1/2↽ +


1 +

C

⇀ ⇁


1 +

C

ω⇁/2⇀ ⇁


m(ω2/2⇀)

→

1 +

C

⇀ ⇁


1 +

C

ω⇁/2⇀ ⇁

(
e↓▷↽ + e↓▷ω1/2↽ +m(ω2/2⇀)

)

→ e
(
1+ 1

εϑ/2

)
C
ϖϑ

(
e↓▷↽ + e↓▷ω1/2↽ +m(ω2/2⇀)

)
.

Iterating this process n times, we estimate:

m(⇀) → e
∑n→1

j=0
1

εjϑ/2
C
ϖ

(
n↓1∑

j=0

e↓▷ωj/2↽ +m(ωn/2⇀)

)

→ e
εϑ/2

εϑ/2→1

C
ϖ

(
n↓1∑

j=0

e↓▷ωj/2↽ +m(ωn/2⇀)

)
.

Now take n ≃ ↘, using that m(t) ≃ 0 as t ≃ ↘ to obtain

m(⇀) → e
εϑ/2

εϑ/2→1

C
ϖ

↑∑

j=0

e↓▷ωj/2↽ ,

and consequently, m(⇀) = O(e▷↽ ). Thus, w(t) = o(eεt) with ε = ▷/2. Then, the conclusions of
Theorem 4.5 follow from Lemma 4.7.

The fine scale structure of the ω-Riccati model can be further delineated in showing that every
explosive by time t > 0 tree has a hyperexplosive subtree.
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Proposition 4.8. Suppose ω > 1. Then, writing v ↑ s to mean v = s|m for some m ↔ 0, let

Lv = sup
s⇐∂T,v⇐s

↑∑

j=|v|

ω↓jTs|j
dist
= ω↓|v|Lς, v ↑ T.

Then,

P (⇒v⇐T[Lv → t↗”v] | S→t) = 1.

Proof. Recall the notation for the branching time of v ↑ T defined by (4.5), i.e.,

”s =
↑∑

j=0

ω↓jTs|j, s ↑ ϑT, ”v =
|v|∑

j=0

ω↓jTv|j, v ↑ T. (4.15)

Fix t > 0. Let Ht = ⇒v⇐T[Lv → t ↗ ”v] ↑ F denote the event that there is a hyper-explosive
subtree by time t. Observe that one may bound the conditional probability that there is no hyper-
explosion at v given the event [t↗”v → 1

n ] as follows:

P(Lv > t↗”v| t↗”v↔
1

n
) → P(Lv >

1

n
| t↗”v↔

1

n
)

= P(Lv >
1

n
) = P(Lς >

ω|v|

n
) → c exp(↗ω|v|

n
), (4.16)

since by Theorem 4.5, P(Lς > r) → ce↓r, r ↔ 0, for some constant c > 0. Now, choose Kn > n,
such that

c exp(↗ωm

n
) < 3↓m, ⇔m ↔ Kn.

This is possible since for every n ↔ 1, 3m exp(↗ωm

n ) = o(1) as m ≃ ↘. Thus, by (4.16) we have

P([Lv > t↗”v] ∝ [t↗”v↔
1

n
]) → 3↓|v| for all v ↑ T with |v| = Kn.

Observe that for any N ↔ 1,

[S→t] = ⇒n↘N ⇒|v|=Kn,v⇐T


⇒s⇐∂T,v⇐s[”s → t↗ 1

n
]


. (4.17)

To see measurability of ⇒s⇐∂T,v⇐s[”s → t↗ 1
n ], observe that for a fixed v ↑ T

⇒s⇐∂T,v⇐s[”s → t↗ 1

n
] = ∝↑

m↘|v| ⇒u⇐T,v⇐u,|u|=m [”u → t↗ 1

n
].

Thus, for arbitrary n ↔ 1, since Hc
t = ∝↑

j=1 ∝|v|=j [Lv > t ↗ ”v] ′ ∝|v|=Kn [Lv > t ↗ ”v], and
since for v ↑ s ↑ ϑT, [t↗”s ↔ 1/n] ′ [t↗”v ↔ 1/n], one has

Hc
t ∝ [S→t] ′ ⇒n↘N ⇒|v|=Kn ([Lv > t↗”v] ∝ [t↗”v↔

1

n
]).
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Therefore, using Kn > n, for all n ↔ N

P(Hc
t ∝ [S→t]) →

∑

n↘N

∑

|v|=Kn

P([Lv > t↗”v] ∝ [t↗”v↔
1

n
])

→
∑

n↘N

∑

|v|=Kn

3↓|v| =
∑

n↘N

2Kn3↓Kn →
∑

n↘N


2

3

n

= 3


2

3

N

.

Thus, letting N ≃ ↘,
P(Hc

t ∝ [S→t]) = 0.

Since 0 < P(S→t) < 1, the assertion follows.

In the next section, we will use Proposition 4.8 in the context of the stochastic Picard ground
state iteration method, described in Section 5, (see Proposition 5.4 and Lemma 5.6).

5 The Solution Process, Mean Flow Equation, and Stochastic
Picard Ground State Iterations

The purpose of the present section is to briefly review the stochastic Picard ground state method
in the context of well-posedness problems for (2.6). The methods of [2] provide a useful view of
the solution process X from the perspective of extreme value theory [2, 14, 22]. Specifically, the
stochastic recursion expresses the length of the longest ray-indexed sum as the (independent) sum
of Yς plus the maximum of the longest paths of the two subtrees emerging from vertices 1 and 2;
the mean of which is (1.2). Such recursive structure inspired the stochastic Picard ground state
method for constructing solution processes in [7] by the iterative methods described below.

In [14], the following idea, inspired by the proof of the uniqueness results for the Navier-
Stokes equations in [19], provides an iterative approach for proving non-uniqueness of mean flow
equations in the context of stochastic explosion. This method will be referred to as the stochas-

tic Picard ground state iterations, or simply stochastic Picard iterations. This method is suitable
for non-linear systems, such a (2.6), in contrast to a more typical probabilistic approach to linear
parabolic equations, and homogeneous Markov processes in general, where explosion of the as-
sociated Markov process can be exploited for non-uniqueness by re-initiating the process at the
time of explosion S to construct distinct distributions with the same local behavior. As shown
below, for the explosive linear pantograph equation (2.5) (ω > 1), the minimal solution of (1.3)
in the context of stochastic Picard iterations approach coincides with that obtained from the stan-
dard (Feller) Markov process theory minimal solution. While the latter is not applicable to the
non-linear ω-Riccati equation, the former does yield solutions.

In the present context of (2.6), the stochastic Picard iterations proceed by considering an arbi-
trary initial “ground state” process X0(t) to be determined. Define Xn(t) sample pointwise by

Xn(t) =


u0 if Tς > t

X(1)
n↓1(ω(t↗ Tς))X

(2)
n↓1(ω(t↗ Tς)) otherwise,

(5.1)
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Where X(1)
n↓1 and X(2)

n↓1 are conditionally on Tς independent copies of Xn↓1, and, as in (2.16), Tς

the root clock distributed exponentially with intensity 1. Thus, Xn(t) is a finite product where each
t-leaf v, with |v| < n, contributes u0 and each v, with |v| = n (the truncated branch), contributes
X0(ω|v|(t↗”v)). Note that, since X0(t) is a stochastic process, by induction, for any n ↑ N, Xn(t)
is a well-defined progressively measured stochastic process. Moreover, if u(0)(t) = E(X0(t)) is
well-defined, then the sequence u(n) = E(Xn), n ↔ 0 is well-defined and formally satisfies Picard-
type iterations of (2.6):

u(n)(t) = u0e
↓t +

∫ t

0

e↓s[u(n↓1)(ω(t↗ s))]2ds (5.2)

We have the following result about the convergence of the stochastic iterations to a solutions pro-
cess.

Theorem 5.1. Let Xn(t) be the sequence of stochastic Picard iterations satisfying (5.1). Suppose

that for all t > 0, Xn(t) is convergent a.s. as n ≃ ↘. Then there exists a stochastic process X(t)
such that Xn(t,◁) ≃ X(t,◁) a.e. on [0,↘) ∞ ! with respect to the product measure µ[0,↑) ∈ P
as n ≃ ↘, where µ[0,↑) is a Borel measure on [0,↘). Moreover, for all t > 0, X(t) is a solution

process for the ω-Riccati equation, satisfying (2.16) a.s.

Proof. We model the probability space by ◁ = (◁v)v⇐T ↑ ! = [0,↘)T, with (!,B”,P) being
a product probability space of countably many intensity one probability measures exponential
measures defined on B[0,↑) – the Borel 0-algebras of [0,↘): dP =

∏
v⇐T dPv, with dPv(◁v) =

e↓◁vd◁v. Thus, in this setting, the exponential clocks are Tv(◁) = ◁v.
Let T1 = {v ↑ T \ {φ} : v|1 = 1} and T2 = {v ↑ T \ {φ} : v|1 = 2} be the ”left” and right

subtrees of T. Write ◁(1) = (◁v)v⇐T1 ↑ !1 = [0,↘)T1 and ◁(2) = (◁v)v⇐T2 ↑ !2 = [0,↘)T2 .
Thus, we can view (!,P) as a product space: ◁ = (◁0,◁(1),◁(2)) ↑ ! = [0,↘) ∞ !1 ∞ !2

and dP(◁) = dPς(◁ς) ∈ dP(1)(◁(1)) ∈ dP(2)(◁(2)) with dPς(◁ς) = e↓◁ϱd◁ς, and dP(j)(◁(j)) =∏
v⇐Tj

e↓◁vd◁v, j = 1, 2. Note that (!,P), (!j,P(j)), j = 1, 2 are identically distributed probabil-
ity spaces.

Let E = {(t,◁) ↑ [0,↘)∞! : Xn(t,◁) is convergent in R}. Since Xn is measurable in t and
◁, E is measurable with respect to the 0-algebra B[0,↑)∈B”. Note that since for any t > 0Xn(t)
is convergent a.s., P(Et) = 1, where Et = {◁ ↑ !| (t,◁) ↑ E }. Thus, by the Fubini’s Theorem,

[µ[0,↑) ∈ P](E c) =

∫ ↑

0

P(! \ Et) dt = 0.

Define

X(t,◁) =

{
lim
n↗↑

Xn(t,◁), (t,◁) ↑ A;

0, otherwise.

Clearly, X(t) is a well-defined progressively measured stochastic process and Xn ≃ X a.e. in
(t,◁).

To show X(t) is a solution process, fix a t > 0. Suppose Tς = ◁ς < t. In this setting, in (5.1)
and (2.16), X(j)

n↓1(ω(t↗Tς)) = Xn↓1(ω(t↗◁ς),◁(j)), and X(j)(ω(t↗Tς)) = X(ω(t↗◁ς),◁(j)),
j = 1, 2. Note that for all n ↑ N and j = 1, 2 X(j)

n [◁ϱ<t] is measurable in (t,◁). For j = 1, 2, let

E
(j)
t (◁ς) =


◁(j) ↑ !j : ◁ς < t, and Xn↓1(ω(t↗ ◁ς),◁

(j)) ≃ X(ω(t↗ ◁ς),◁
(j)) as n ≃ ↘


.
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Since Xn ≃ X a.s.,

P(j)(E (j)
t (◁ς)) =

∫

”j

E (j)(◁ϱ)(◁
(j)) dP(j)(◁(j)) = 1, j = 1, 2, ◁ς < t.

Let
Ẽt =


◁ = (◁ς,◁

(1),◁(2)) : ◁ς ↔ t or [◁ς < t and ◁(j) ↑ E
(j)
t (◁ς), j = 1, 2]


.

Note that we have

Ẽt ={◁ : Tς(◁) ↔ t}
⇒ {◁ : Tς(◁) < t and Xn(ω(t↗ Tς(◁)),◁

(j)) ≃ X(ω(t↗ Tς(◁)),◁
(j)), j = 1, 2}.

Since Xn(·, ·), Tς(·) as well as the the mappings (t,◁) ≃ (ω(t ↗ ◁ς),◁(i)), j = 1, 2, are measur-
able, we conclude that Ẽt is measurable. Thus, by Fubini’s Theorem

P(Ẽt) = e↓t +

∫ t

0

e↓◁ϱ

∫

”1
E
(1)
t (◁ϱ)

(◁(1)) dP(1)(◁(1))

∫

”2
E
(2)
t (◁ϱ)

(◁(2)) dP(2)(◁(2)) d◁ς

= e↓t +

∫ t

0

e↓◁ϱ 1 · 1 d◁ς = 1 .

The proof is finished once we observe that for any ◁ ↑ Ẽt, (2.16) follows from (5.1) by taking
n ≃ ↘.

By a straightforward adaptation of the proof above, we can prove analogous convergence re-
sults for the stochastic Picard iterations corresponding to the pantograph equation (1.3) in both
binary tree representation (2.17) and the unary tree representation (2.10).

Corollary 5.2. Let Xn(t) be the sequence of binary cascade stochastic Picard iterations for (1.3)

Xn(t) =


u0 if Tς ↔ t,
a
2X

(1)
n↓1(ω(t↗ Tς)) +

a
2X

(2)
n↓1(ω(t↗ Tς)) if Tς < t.

(5.3)

and X̃n(t) is the sequence of unary cascade stochastic Picard iterations for (1.3):

X̃n(t) =


u0 if T0 ↔ t,

aX(1)
n↓1(ω(t↗ T0)) if T0 < t.

(5.4)

Suppose that for all t > 0, Xn(t) is convergent a.s. as n ≃ ↘. Then there exists a stochastic

process X(t) such that Xn(t,◁) ≃ X(t,◁) as n ≃ ↘ a.e. on [0,↘) ∞ ! with respect to the

product measure µ[0,↑) ∈ P, where µ[0,↑) is a Borel measure on [0,↘). Moreover, for all t > 0,

X(t) is a binary solution process for the pantograph equation, satisfying (2.17) a.s.

Similarly, if for all t > 0, X̃n(t) is convergent a.s. as n ≃ ↘,then there exists a stochastic

process X̃(t) such that X̃n(t,◁) ≃ X̃(t,◁) as n ≃ ↘ a.e. on [0,↘) ∞ ! with respect to the

product measure µ[0,↑) ∈ P, where µ[0,↑) is a Borel measure on [0,↘). Moreover, for all t > 0,

X̃(t) is a unary solution process for the pantograph equation, satisfying (2.10) a.s.
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If the explosion time S > t, then Xn(t) is an eventual constant sequence, equal to X(t) satis-
fying (2.16) for big enough n. In the explosive case, i.e. when ω > 1, P(S < ↘) = 1, different
choices of the ground state X0, led to super-martingales yielding in the limit to multiple solutions
for the same initial states u0, [14]. Notably, for the initial condition u0 = 0, the choice of a random
initial iteration,

X0(t) =


0, Tς ↔ t,
G(t↗ Tς), Tς < t,

(5.5)

where G is a continuous function, leads to a uniformly integrable super-martingale {Xn}, provided
u(0) = E(X0) satisfies [u(0)(ωt)]2 → G(t). If one chooses G(t) ↑ [0, 1] (e.g. G(t) ⇐ 0 or G ⇐ 1),
one obtains a uniformly integrable super-martingale, yielding in the limit of expectations solutions
for the ω-Riccati equation (1.2). One remarkable choice of G used in [14] is

GA(t) = e↓t→ω
(1 + ↼t↓(φ+1)), ↼ =

ln 2

lnω
,

which yields a solution obtained earlier by Athreya [2] using an extreme value method. Notably,
this special choice of ground state GA is implicitly connected to the Frechet extreme value distri-
bution with parameter ↼.

The minimal solution process X(t) extends X(t) past explosion time by setting it equal to 0.
Alternatively, X is the limit, as n ≃ ↘ of the iterative process Xn, described above, corresponding
to the ground state X0 ⇐ 0. It is easy to verify that the minimal process satisfies (5.1) for all t > 0.

In the non-explosive case, we have the following existence and uniqueness results connected
to stochastic Picard iterations, [9, 14].

Proposition 5.3. Let ω ↑ (0, 1]. Then, for any choice of ground state, X0,

Xn(t) ≃ X(t) = uNt
0 for all t ↔ 0,

where Nt = |ϑV (t)| < ↘ a.s.. Moreover:

1. If ω ↑ (0, 1), then u(t) = E(X(t)) < ↘ for all u0, t > 0 and, as t ≃ ↘

u(t) ≃
{
0, if u0 ↑ [0, 1);

↘, if u0 > 1.

(u(t) ⇐ 1 if u0 = 1).

2. If ω = 1, then u(t) = E(X(t)) < ↘ solves the logistic equation u→ = ↗u + u2
with

corresponding asymptotic behavior in t.

In the explosive case, the following non-uniqueness results involving the use of constant ground
states goes back to [14].

Proposition 5.4. Let ω > 1. Consider the stochastic Picard ground state iterations Xn(t) for (2.6)
with constant ground states X0(t) ⇐ ς > 0. As before, denote Nt = |ϑV (t)| Then,

(1) If u0 ↑ [0, 1] then
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(i) For ς ↑ (0, 1),

Xn ≃ X =

{
0 if S < t

uNt
0 , if S ↔ t.

In particular, the minimal solution u(t) = u(t) = E(X) is well-defined and u(t) ≃ 0
as t ≃ ↘.

(ii) For ς = 1,

Xn ≃ X =

{
1 if L < t

uNt
0 , if L ↔ t.

In particular, u(t) = u(t) = E(X) is well-defined and u(t) ≃ 1 as t ≃ ↘
(iii) For ς > 1, the limit

X↑(t) = lim
n↗↑

Xn(t) =

{
↘ if S < t

uNt
0 , if S ↔ t.

In particular, E(X↑(t)) = ↘ for all t > 0

(2) Suppose that u0 > 1.

(i) For ς ↑ [0, 1),

Xn ≃ X =

{
0, if S < t

uNt
0 , if S ↔ t.

In particular, for all t > 0

u(t) = E(X(t))






< ↘, if u0 < (2ω↗ 1)/4,

= ↘, in finite time if u0 > 2ω↗ 1,

unknown in other cases.

If there is a locally integrable function g such that Xn → g for all n, then u(t) =
EX(t) < ↘.

(ii) For ς = 1,

Xn(t) ≃ X(t) =

{
↘ on [Nt = ↘]

uNt
0 on [Nt < ↘].

In particular, if ω ↑ (1, 2), then E(X(t)) = ↘, and if ω > 2 then X(t) ↑ R is

well-defined for all t > 0, while

u(t) = E(X(t))






< ↘, if u0 < (2ω↗ 1)/4↗ (6ω2 ↗ 15ω + 4)/4(ω↗ 1)(2ω↗ 1),

= ↘, in finite time if u0 > 2ω↗ 1 or ω ↑ (0, 2),

unknown in other cases.
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(iii) For ς > 1,

Xn ≃ X↑ =

{
↘ if S < t

uNt
0 , if S ↔ t.

u(t) = E(X↑(t)) = ↘ for all t > 0.

Proof. In all cases, the particular form of limits of Xn follow from the explicit representation (5.6)
and Lemma 5.6 below. The statements about the expectations are proven in [14], with additional
input from Proposition 4.3 in the case ω ↑ (1, 2). Namely, the cases in part (1) follow from
[14, Section 4, Proposition 4.1 and Theorem 4.1]. The case 2(i) is proven in [14, Theorems 3.3 and
5.1]. The part (2)(ii) is proven in [14, Theorems 4.2 and 5.1] (noting that u(t) ↔ u(t)); moreover,
Proposition 4.3 is used to conclude infiniteness of the expectation in the case ω ↑ (1, 2). Finally,
the case (2)(iii) follows from the fact that P(S < t) > 0.

In preparation for Lemma 5.6, it is convenient to introduce an alternative representation of ϑT.
Identify ϑT = {1, 2}↑ with points in the unit interval under dyadic expansion. In particular, the
ray s = (s1, s2, . . . ) ↑ ϑT defines xs =

∑↑
j=1(sj ↗ 1)2↓j ↑ [0, 1]. Then, for v ↑ T, the set of rays

passing through v define a subinterval Jv = [
∑|v|

j=1(vj ↗ 1)2↓j,
∑|v|

j=1(vj ↗ 1)2↓j + 2↓|v|]. The
countable set of rationals in [0, 1] admit two dyadic representations as rays.

Definition 5.5. A hyperexplosive subtree is said to be maximal if it is not a proper subtree of a
larger hyperexplosive subtree.

Note that a maximal hyperexplosive subtree rooted at v ↑ T corresponds to rays belonging to
the interval

Jv = [xv, xv + 2↓|v|], xv =
|v|∑

j=1

(vj ↗ 1)2↓j.

Lemma 5.6. Let X0 = ς and let

Mn(t) = |{v ↑
o
V (t) : |v| = n}|,

and

Nn(t) = |{v ↑ ϑV (t) : |v| → n}|.

Then, the Picard ground state iteration at generation n is given by

Xn(t) = uNn(t)
0 ςMn(t). (5.6)

On the event [S < t] one has:

(i) u0 > 1, ς ↑ [0, 1) implies Xn(t) ≃ 0 as n ≃ ↘.

(ii) u0 ↑ (0, 1), ς > 1 implies Xn(t) ≃ ↘ as n ≃ ↘.
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Proof. The explicit representation (5.6) directly from (5.1) by induction.
Now assume the event [S < t]. Not that in this case, Mn(t) > 0 for all t > 0, so by if ς = 0,

(5.6), Xn(t) = 0 ≃ 0 as n ≃ ↘. Thus, it remains to consider the case ς > 0.
By Proposition 4.8, V (t) contains maximal hypexplosive subtrees. In accordance with the

Definition 5.5, at generation n > |v|, a maximal hyperexplosive subtree contributes 2n↓|v| =
|Jv|2n vertices to the count Mn, where |J | denotes Lebesgue measure of J ↙ [0, 1]. Notice that
non-intersecting hyperexplosive subtrees correspond to the dyadic rationals with non-intersecting
interiors. Let

H = {s ↑ ϑT : there is a maximal hyperexploding subtree rooted at s|m for some m ↔ 0.}

Then |H | =
∑

v⇐T |Jv| and |H | > 0 since by Proposition 4.8 every exploding tree has a hy-
perexploding subtree. Let εk = 2↓k, and let v1, . . . , vmk ↑ T be a finite set of root vertices of
hyperexplosive subtrees, arranged in increasing order of |vi|, such that

|H \ ⇒mk
i=1 Ji| < εk, ⇒mk

i=1Jvi ↙ H .

If n > mk, these hyperexploding subtrees contribute | ⇒n
i=1 Jvi |2n vertices to the count Mn. Thus,

Mn ↔ (|H |↗ εk)2
n.

Next consider the t-leaf count. Each t-leaf v ↑ ϑV (t) corresponds to the dyadic interval Jv =
[xv, xv + 2|v|], so that distinct t-leaves correspond to intervals having non-overlapping interiors. In
this case each Jv contributes only once to the count Nn, provided n ↔ |v|. Let,

L = ⇒v⇐∂V (t)Jv.

That is, L is the subset of [0, 1] corresponding to the t-leaves. If the tree has at least one t-leaf, and
if S < t, then |L | =

∑
v⇐∂V |Jv| > 0. L and H have disjoint interiors as well. For εk = 2↓k,

there exist v1, . . . , vϱk , arranged in increasing order of |vi|, such that

|L |↗
ϱk∑

i=1

|Jvi | < εk, ⇒ϱk
i=1Jvi ↙ L .

If n > |vϱk | then the tree has at least ϖk t-leaves, and at most ϖk + εk2n intervals of size 2↓n on a
set of measure at most εk. Thus,

ϖk → Nn → ϖk + εk2
n.

Collecting these counts, one has for all k ↔ 1, there are mk, ϖk ↔ 1 such that for all n ↔
max{ϖk,mk}

Nn → ϖk + εk2
n, Mn ↔ (|H |↗ εk)2

n.

Write u0 = ς↓D, D > 0. In the case (i) one has u0 = ς↓D > 1 and 0 < ς < 1 so that in the n-th
iteration

Xn(t) → ς↓D(ϱk+εk2n)ς(|H |↓εk)2n

= ς(|H |↓(1+D)εk)2n↓ϱk , (5.7)

26



In the case (ii), u0 = ς↓D ↑ [0, 1) and ς > 1, so that

Xn(t) ↔ ς↓D(ϱk+εk2n)ς(|H |↓εk)2n

= ς(|H |↓(1+D)εk)2n↓ϱk , (5.8)

provided n ↔ ϖk ∋mk. Note that given the exploding tree, |H |, D, ς are fixed positive quantities.
So choosing k such that (|H |↗(1+D))εk > 0, the assertions in the lemma follow in the indicated
limits.

6 Stochastic Picard Ground State Iterations and Stochastic Trans-
forms: the non-uniqueness of ω-Riccati solutions

The purpose of this section is to use the stochastic Picard iterations method described below and
the non-uniqueness results for (6.1) in Proposition 3.4 to construct a family of non-unique global
solutions to (1.2) for any ω > 1 and a range of initial data u0. (We note that, as shown in [14], when
ω > 1, solutions of (1.2) blow up in finite time, limiting the range of initial data for which global
solutions exist.) Notably, as will be seen in Section 6.2, the ω-Riccati equation and the pantograph
equation can be connected via a transformation at the level of solution processes, which, in the
case ω > 2, allows us to exploit the non-minimal solution process constructed in Theorem 3.5
for the pantograph equation to construct multiple solutions for (1.2). Moreover, in the case of the
ω-Riccati equation, the non-uniqueness is established for the case u0 = 1, and then transferred to
other initial data via a use of another transformation at the level of solution processes, this time
connecting solution processes for corresponding to u0 = 1 and arbitrary u0.

Note that the linearization of (1.2) with u0 = 1, about the constant steady state u ⇐ 1 is the
pantograph equation with b = ↗1, a = 2:

v→(t) = ↗v(t) + 2v(ωt), v(0) = 0. (6.1)

Our goal is to prove the following theorem.
Theorem 6.1. Let ω > 1 and u0 ↑ Rω ↙ R defined by

Rω =

0, max{1, (2ω↗ 1)/4↗ (6ω2 ↗ 15ω + 4)/4(ω↗ 1)(2ω↗ 1)}


⇒ {1}. (6.2)

For each ϱ > 0, there exists a solution uϖ to (1.2) such that

lim
t↗↑

1↗ uϖ(t)

t↓φ
= ϱ, (6.3)

where ↼ = logω 2 > 0.

Consequently, there are infinitely many solutions converging to 1 with an algebraic rate t↓φ

as t ≃ ↘. In the case ω ↑ (1, 2), it was shown in [13] that u≃(t) = P(|ϑV (t)| < ↘) is also a
solution to (1.2) with u0 = 1. This solution has an exponential convergence rate as t ≃ ↘ since

1↗ u≃(t) = P(|ϑV (t)| = ↘) → P(L > t) → Ce↓t,

where the last inequality is due to Theorem 4.5. Thus, u≃ does not belong to the family of solutions
{uϖ}ϖ>0.

The proof of Theorem 6.1 will involve several steps. We will first consider the case of u0 = 1
in two separate regimes: ω ↑ (1, 2] and ω > 2. We then extend the results to other initial data.
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6.1 Proof of Theorem 6.1 in the case u0 = 1 and 1 < ω → 2

A solution u to (1.2) with u0 = 1 is a fixed point of F , where

F [u](t) = e↓t +

∫ t

0

e↓su2(ω(t↗ s))ds.

Let
↼ = logω 2 =

ln 2

lnω
↔ 1. (6.4)

Proposition 6.2. For sufficiently large M > Mω > 0 and sufficiently small 0 < ς < ςM , the

function

1M,⇁(t) =


1 if t → M,
1↗ ςt↓φ

if t > M
(6.5)

satisfies F [1M,⇁] → 1M,⇁.

Proof. To simplify the notation in this proof, we will drop the subscripts of 1M,⇁. Let

1̃(t) = 1↗ 1(t) =


0 if t → M,
ςt↓φ if t > M

and

G[1̃] = 1↗ F [1̃] =

∫ t

0

e↓(t↓s)(21̃(ωs)↗ 1̃(ωs)2)ds.

It suffices to show that G[1̃] ↔ 1̃. For t ↔ M ,

G[1̃] =

∫ t

0

e↓t+s(21̃(ωs)↗ 1̃(ωs)2)ds =

∫ t

M/ω

e↓t+s(2ςω↓φs↓φ ↗ ς2ω↓2φs↓2φ)ds

= 2ςω↓φe↓t

∫ t

M/ω

ess↓φ


1↗ ςω↓φ

2
s↓φ


ds

= ςe↓t

∫ t

M/ω

ess↓φ


1↗ ς

4
s↓φ


ds.

The inequality G[1̃] ↔ 1̃ will be held for all t ↔ 0 provided that
∫ t

M/ω

ess↓φ


1↗ ς

4
s↓φ


ds ↔ ett↓φ ⇔ t ↔ M.

This inequality is equivalent to

ς

4
→ f(t) :=

 t

M/ω e
ss↓φds↗ ett↓φ

 t

M/ω e
ss↓2φds

⇔ t ↔ M. (6.6)

We will show that for sufficiently large M , inft↘M f(t) > 0. Once this is proven, (6.6) will be
satisfied by choosing ς → ςM = 4 inft↘M f(t). By L’Hospital Rule,

lim
t↗↑

f(t) = lim
t↗↑

↼ett↓φ↓1

ett↓2φ
=


1 if ↼ = 1
↘ if ↼ > 1.
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Since f is continuous on (0,↘), showing inft↘M f(t) > 0 is equivalent to showing that f(t) > 0
for all t ↔ M . Note that f(t) has the same sign as

f1(t) =

∫ t

M/ω

ess↓φds↗ ett↓φ.

Since f →
1(t) = ↼ett↓φ↓1 > 0, one sees that f1(t) ↔ f1(M) for all t ↔ M . On the other hand,

f1(M) = f2(M) where

f2(x) =

∫ x

x/ω

ess↓φds↗ exx↓φ.

One has f →
2(x) = ↼exx↓φ↓1 ↗ 1

ωe
x/ω(x/ω)↓φ . Note that f →

2(x) > 1 for sufficiently large x and
hence, limx↗↑ f2(x) = ↘. Hence, there exists Mω > 0 such that f2(M) > 0 for all M > Mω.
Therefore, f(t) > 0 for all t ↔ M > Mω.
Proposition 6.3. Let M, ς > 0 and 1 = 1M,⇁ be defined as in Proposition 6.2. Consider stochastic

Picard iterations Xn(t) = XM,⇁,n(t) with the ground state X0(t) = XM,⇁,0(t) = 1M,⇁(t) and the

initial state u0 = 1, i.e.

X0(t) = 1(t), Xn(t) =


1 if Tς ↔ t,

X(1)
n↓1(ω(t↗ Tς))X

(2)
n↓1(ω(t↗ Tς)) if Tς < t.

, n ↔ 1, (6.7)

where X(1)
n↓1 and X(2)

n↓1 are conditionally on Tς i.i.d. copies of Xn↓1. Then :

(i) For all n ↑ N and t ↔ 0

Xn(t) =


v⇐T, |v|=n↓1

12M,⇁(ω
n(t↗”v)), a.s. (6.8)

where ”v =
∑|v|

j=0
Tv|j
ωj .

(ii) For each t > 0, The sequence {Xn(t)} = {XM,⇁,n(t)} is a non-negative supermartingale

with respect to the filtration Fn = 0(Tv : |v| → n↗ 1).

Proof. The formula (6.8) from part (i) follows by induction from the stochastic iterations. Indeed,
for n = 1, since 1(t) = 1 for t → 0 we have

X1(t)
(6.7)
= [Tϱ↘t] + 12(ω(t↗ Tς)) [Tϱ<t] = 12(ω(t↗ Tς)),

So (6.8) holds. The inductive step follows similarly, once we observe that the product in the right-
hand side of (6.8) is 1 if t → 0,

To prove (ii), we will show by induction on n that E[Xn+1(t)|Fn] → Xn(t). For n = 1,
F1 = 0(Tς) and, as noted above, X1(t) = 12(ω(t↗ Tς)). Note that F0 = △. Thus, since 1(t) = 1
for t → 0, using Proposition 6.2, we obtain

E(X1(t)|F0) = E(X1(t)) =

↑∫

0

e↓s12(ω(t↗ s)) ds

= e↓t +

t∫

0

e↓s12(ω(t↗ s)) ds

→ 1(t) = X0(t) for all t ↔ 0. (6.9)
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For n = 2, using (6.8), we write

X2(t) =


|v|=1

12(ω2(t↗”v)) =


|v|=1

12(ω(⇀ ↗ Tv)) = X(1)
1 (⇀)X(2)

1 (⇀)

where ⇀ = ω(t↗ Tς) and

X(1)
1 (⇀) = [T1↘↽ ] + 12(ω(⇀ ↗ T1)) [T1<↽ ] = 12(ω(⇀ ↗ T1)),

X(2)
1 (⇀) = [T2↘↽ ] + 12(ω(⇀ ↗ T2)) [T2<↽ ] = 12(ω(⇀ ↗ T2)).

Note that, conditionally on Tς, X
(1)
1 (⇀) and X(2)

1 (⇀) are i.i.d. and have the same distribution as
X1(⇀). Therefore, using the substitution property for conditional expectations together with (6.9),
we have:

E(X2(t)|Tς) = E(X(1)
1 (⇀)X(2)

1 (⇀)|⇀) = E(X(1)
1 (⇀)|⇀) · E(X(2)

1 (⇀)|⇀)
= E(X1(⇀)|⇀)2 → 12(⇀) = 12(ω(t↗ Tς)) = X1(t). (6.10)

Now suppose E(Xn(t)|Fn↓1) → Xn↓1(t) for some n ↔ 2. Using (6.7) together with the fact
that Xn(t) = 1 for t → 0 (as follows from (6.8)), we have

Xn+1(t) = X(1)
n (⇀)X(2)

n (⇀),

where, as before, ⇀ = ω(t ↗ Tς). Recall that, conditionally on Tς, X
(1)
n (⇀) and X(2)

n (⇀) are
independent and distributed as Xn(⇀). For k ↑ {1, 2}, denote F

(k)
n↓1 = 0(Tkv : |v| = n ↗ 2).

Because Fn = 0(Tς)▽F
(1)
n↓1 ▽F

(2)
n↓1 and that 0(Tς), F

(1)
n↓1 and F

(2)
n↓1 are independent, we get by

organizing random variables according to

(Tv : |v| → n↗ 1) = (Tς, ( (T1v : |v| → n↗ 2), (T2v : |v| → n↗ 2) ) ) ,

and applying the substitution property in two directions, as in (6.10), followed by the induction
hypothesis,

E(Xn+1(t)|Fn)

= [Tϱ↘t] + E(X(1)
n (⇀)X(2)

n (⇀) [Tϱ<t]|Fn)

= [Tϱ↘t] + E( [Tϱ<t]X
(1)
n (⇀)|0(Tς) ▽ F

(1)
n↓1) · E( [Tϱ<t]X

(2)
n (⇀)|0(Tς) ▽ F

(2)
n↓1)

→ [Tϱ↘t] +X(1)
n↓1(⇀)X

(2)
n↓1(⇀) [Tϱ<t] = Xn(t). (6.11)

Proposition 6.4. Assume ω ↑ (1, 2]. Let M, ς > 0 and 1M,⇁ be defined as in Proposition 6.2 and

{XM,⇁,n(t)}n↘1 be the stochastic process defined by (6.8).

(i) As n ≃ ↘, XM,⇁,n(t) converges a.s. and the limit process XM,⇁(t) = limn↗↑ XM,⇁,n(t)
satisfies (2.16) with u0 = 1. Moreover, 0 < XM,⇁(t) < 1 on the event [L < t], where L
denotes the longest path, see (4.6).
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(ii) The function uM,⇁(t) = E(XM,⇁(t)) solves (1.2) with u0 = 1. Moreover,

lim
t↗↑

1↗ uM,⇁(t)

t↓φ
= ς .

Proof. To simplify the notations in the proof, we will drop the subscripts M and ς and will only
keep the subscript n.
By Proposition 6.3 (ii) and Doob’s Martingale Convergence Theorem for positive supermartin-
gales, the sequence {Xn(t)} = {XM,⇁,n(t)}n↘1 converges a.s.. Denote the limit by X(t) =
XM,⇁(t). Since for all n ↑ N and t > 0, Xn(t) ↑ [0, 1] a.s., we have E(X(t)) ↑ [0, 1]. By
Theorem 5.1, X(t) satisfies (2.16) with u0 = 1. Thus u(t) = E(X(t)) satisfies (1.2).

On the event [L < t], one has

Xn(t) =


|v|=n↓1

12(ωn(t↗”v)), ⇔n ↔ 1.

Since t↗”v ↔ t↗L > 0, we have ωn(t↗”v) > M for sufficiently large n independent on v ↑ T.
Here, M is the number in Proposition 6.2. Thus, for sufficiently large n,

Xn(t) [L<t] =


|v|=n↓1

(1↗ ς(ωn(t↗”v))
↓φ)2 [L<t] =



|v|=n↓1


1↗ ς

(t↗”v)↓φ

2n

2

[L<t]

Denote Sn = min|v|=n ”v and Ln = max|v|=n ”v. Note that Sn↓1 → ”v → Ln↓1 for |v| = n ↗ 1.
Thus,



|v|=n↓1


1↗ ς

(t↗ Ln)
↓φ

2n

2

[L<t] → Xn(t) [L<t] →


|v|=n↓1


1↗ ς

(t↗ Sn)
↓φ

2n

2

[L<t]

In other words,


1↗ ς

(t↗ Ln)
↓φ

2n

2·2n→1

[L<t] → Xn(t) [L<t] →

1↗ ς

(t↗ Sn)
↓φ

2 · 2n

2n→1

[L<t].

Letting n ≃ ↘, one gets

e↓⇁(t↓L)→ω

[L<t] → X(t) [L<t] → e↓⇁(t↓S)→ω

[L<t] . (6.12)

Therefore, 0 < X(t) < 1 on the event [L < t].

To establish the limit in part (ii), we estimate

E(X(t) [L<t]) → E(X(t)) = E(X(t) [L<t]) + E(X(t) [L↘t]) → E(X(t) [L<t]) + E( [L↘t]).

Together with (6.12), we have

E
(
e↓⇁(t↓L)→ω

[L<εt]

)
→ u(t) → E

(
e↓⇁(t↓S)→ω

[L<t]

)
+ E( [L↘t])
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for any constant ε ↑ (0, 1). Hence,

E
(
(1↗ e↓⇁(t↓S)→ω

) [L<t]

)
→ 1↗ u(t) → E

(
(1↗ e↓⇁(t↓L)→ω

) [L<εt]

)
+ E( [L↘εt]).

By Theorem 4.5, one has E( [L↘εt]) → Ce↓εt for all t > 0. Dividing both sides of the above
inequalities by t↓φ , we have

E
(
1↗ e↓⇁(t↓S)→ω

t↓φ [L<t]

)
→ 1↗ u(t)

t↓φ
→ E

(
1↗ e↓⇁(t↓L)→ω

t↓φ [L<εt]

)
+ Ctφe↓εt (6.13)

Note that almost surely

lim
t↗↑

1↗ e↓⇁(t↓S)→ω

t↓φ
= ς

Also, limt↗↑ [L<t] = [L<↑] = 1 a.s. due to hyperexplosion [14]. By Fatou’s Lemma,

lim inf
t↗↑

1↗ u(t)

t↓φ
↔ E

(
lim
t↗↑

1↗ e↓⇁(t↓S)→ω

t↓φ [L<t]

)
= ς.

By the inequality 1↗ e↓x → x, one has

RHS(6.13) → E

ς(t↗ L)↓φ

t↓φ L<εt


+ Ctφe↓εt → E


ς(t↗ εt)↓φ

t↓φ L<εt


+ Ctφe↓εt

→ ς(1↗ ε)↓φ + Ctφe↓εt

Thus,

lim sup
t↗↑

1↗ u(t)

t↓φ
→ ς(1↗ ε)↓φ

Because this inequality is true for all ε ↑ (0, 1), one has

lim sup
t↗↑

1↗ u(t)

t↓φ
→ ς,

which completes the proof.

Theorem 6.5. Let M, ς > 0 and 1M,⇁ be defined as in Proposition 6.2, and XM,⇁(t) be the process

defined in Proposition 6.4. Then, for any ϱ ↔ 0, the process XM,⇁,ϖ(t) = (XM,⇁(t))ϖ/⇁ is a

solution process satisfying (2.16) with u0 = 1, and the function uM,⇁,ϖ(t) = E(XM,⇁,ϖ(t)) solves

the problem (1.2) with u0 = 1. Moreover:

(i)

lim
t↗↑

1↗ uM,⇁,ϖ(t)

t↓φ
= ϱ. (6.14)

(ii) For any t > 0,

uM,⇁,ϖ(t) > uM,⇁,ϖ↑(t) if 0 → ϱ < ϱ→,

uM,⇁,ϖ(t) → uM ↑,⇁,ϖ(t) if M < M →, 0 < ς < min{ςM , ςM ↑}
uM,⇁,ϖ(t) ↔ uM,⇁↑,ϖ(t) if 0 < ς < ς→ < ςM .
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Proof. The fact that XM,⇁,ϖ(t) is a solution process satisfying (2.16) with u0 = 1, follows from
raising to power ω/ς both sides of (2.16) with X = XM,⇁ and u0 = 1. Thus, uM,⇁,ϖ = E(XM,⇁,ϖ(t))
satisfies (1.2) with u0 = 1, since, as it will be shown below, the expectation is finite.

To prove (i), raise the equation (6.12) to power ϱ/ς to obtain

e↓ϖ(t↓L)→ω

[L<t] → (XM⇁(t))
ϖ/⇁

[L<t] → e↓ϖ(t↓S)→ω

[L<t] . (6.15)

From here, one can follow the same lines of the proof of Proposition 6.4, part (ii), to show that
uM,⇁,ϖ(t) is finite and

lim
t↗↑

1↗ uM,⇁,ϖ(t)

t↓φ
= ϱ.

To prove (ii), suppose 0 → ϱ < ϱ→. Because 0 < XM,⇁(t) < 1 on the event [L < t], Xϖ↑/⇁
M,⇁ (t) <

Xϖ/⇁
M,⇁(t) on this event. Since [L < t] is not a null event for any t > 0, one has uM,⇁,ϖ↑(t) < uM,⇁,ϖ(t).

Next, suppose M < M → and 0 < ς < min{ςM , ςM ↑}. From the definition of 1M,⇁ in Propo-
sition 6.2, it is clear that 1M,⇁(t) → 1M ↑,⇁(t), which leads to XM,⇁,n(t) → XM ↑,⇁,n(t) for all n.
Therefore, uM,⇁,ϖ(t) → uM ↑,⇁,ϖ(t).

Next, suppose 0 < ς < ς→ < ςM . Denote 2 = ς→/ς > 1. Note that for t > M ,

10M,⇁(t) = (1↗ ςt↓φ)0 > 1↗ 2ςt↓φ = 1M,⇁↑(t).

Thus, X0
M,⇁,n(t) ↔ XM,⇁↑,n(t) for all n. Raising both sides to power ϱ/ς→, one gets Xϖ/⇁

M,⇁,n(t) ↔
Xϖ/⇁↑

M,⇁↑,n(t). Hence, uM,⇁,ϖ(t) ↔ uM,⇁↑,ϖ(t).

6.2 Proof of Theorem 6.1 in the case u0 = 1 and ω > 2

This involves two basic ideas: (i) A transform of the solution process for the multiplicative ω-
Riccati model, and (ii) a stochastic Picard iterations with special ground state X0. All such solu-
tions have an exact convergence rate 1↗ u(t) ⇓ t↓φ as t ≃ ↘, where, as in (6.4) or in (3.4) with
a = 2,

↼ = ↼(ω, a = 2) = logω 2 =
ln 2

lnω
↑ (0, 1). (6.16)

As a consequence, 1↗ u ↓↑ L1.

Proposition 6.6. Suppose X(t) ↔ 0 is a nonnegative binary solution process for (6.1), i.e.

X(t) =


0 if Tς ↔ t
X(1)(ω(t↗ Tς)) + X(2)(ω(t↗ Tς)) if Tς < t

(6.17)

where T ⇓ Exp(1) and X(1)
, X(2)

are two, conditionally on Tς, i.i.d. copies of X(t) (see also (2.17)
with a = 2, u0 = 0). Then

(i) v(t) = E(X(t)), if finite for all t, satisfies (6.1).

(ii) For any ϱ ↔ 0, X(t) = e↓ϖX(t)
satisfies (2.16) and u(t) = E


e↓ϖX(t)


satisfies (1.2).
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Proof. By conditioning on Tς in (6.17) we get

v(t) =

∫ t

0

e↓s2v(ω(t↗ s))ds

which leads to (6.1), proving (i).
To prove (ii), first apply exponential e↓ϖ· to both sides of (6.17) to show X(t) = e↓ϖX(t) satisfies

(2.16). Note that u is always well-defined because e↓ϖX(t) ↑ [0, 1]. By conditioning on Tς in (2.16),
we get

u(t) = e↓t +

∫ t

0

e↓su2(ω(t↗ s))ds

which leads to (1.2).

One can observe from Proposition 6.6 that if (6.17) has a solution X(t) ↔ 0, not identically
zero, then uϖ(t) = E


e↓ϖX(t)


, ϱ ↔ 0, is an infinite family of solutions to (1.2) corresponding to

u0 = 1. Thus, our next goal is will construct a solution process X(t) ↔ 0 of (6.17) that is not
identically zero. The key idea is to use the expected value of the unary solution process given by
Theorem 3.5 as the ground state in the stochastic Picard iterations for (6.17).

Proposition 6.7. Let ↽(t) be from Theorem 3.5 with the convention that ↽(t) = 0 if t → 0. On the

full binary tree T, define

Xn(t) =
∑

|v|=n↓1

2↽(ωn(t↗”v)), ⇔n ↔ 1 (6.18)

where ”v =
∑|v|

j=0
Tv|j
ωj . Then

(i) The sequence {Xn(t)} satisfies the stochastic Picard iterations (5.3) for the binary panto-

graph process with ground state X0(t) = ↽(t), corresponding to a = 2 and u0 = 0, i.e.

Xn(t) =


0 if Tς ↔ t,

X
(1)
n↓1(ω(t↗ Tς)) + X

(2)
n↓1(ω(t↗ Tς)) if Tς < t.

(6.19)

(ii) For each t > 0, {Xn(t)} is a martingale with respect to the filtration Fn = 0(Tv : |v| → n).

(iii) The limit X(t) = limn↗↑ Xn(t) exists. Moreover, E(X(t)) = ↽(t). Moreover, for any ς ↑
(1, 1/↼), E(X⇁(t)) → ↼ϑ(t)

2ϑ , where ↽⇁ is given in Remark 3.7.

Proof. Note that if the ground state X0(t) = 0 for t → 0, the iterative formula (6.19) can be
re-written as

Xn(t) = X
(1)
n↓1(ω(t↗ Tς)) + X

(1)
n↓1(ω(t↗ Tς)), (6.20)

Since by induction Xn(t) = 0 on t ↑ (↗↘, 0] for all n. In case X0(t) = ↽(t), the formula for Xn

given by (6.18) follows from (6.20) directly from the definition of Xn(t) also by induction. Thus,
(6.18) satisfies (6.19).
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Next, we will show by induction on n that E(Xn+1(t)|Fn) = Xn(t) following the same
approach as in the proof of Proposition 6.3, part (ii). Namely, for n = 1, F0 = 0(△) and
X1(t) = 2↽(ω(t↗ Tς)), so

E(X1 |F0) = E(X1) =

∫ t

0

e↓s2↽(ω(t↗ s)) ds = ↽(t) = X0(t). (6.21)

since by Theorem 3.5, ↽ satisfies (6.1).
In the case n = 2, F1 = 0(Tς), and thus

E(X2 |F1) = E(2↽(ω2(t↗”1)) + 2↽(ω2(t↗”2)) |Tς)

= E(2↽(ω(⇀ ↗ T1)) + 2↽(ω(⇀ ↗ T2)) |Tς)

where ⇀ = ω(t↗ Tς). Thus,

E(X2|F1) = E(2↽(ω(⇀ ↗ T1) + 2↽(ω(⇀ ↗ T2)) |Tς)

= E(X(1)
1 (⇀) | ⇀) + E(X(2)

1 (⇀) | ⇀) = 2E(X1(⇀) | ⇀) = 2sX0(⇀) = X1(t),

where (6.21) and the substitution property for conditional probability was used in the 2nd to the
last equality.

Now suppose E(Xn|Fn↓1) = Xn↓1 for some n ↔ 2. We have

E(Xn+1|Fn) = E(X(1)
n (ω(t↗ Tς)) + X(2)

n (ω(t↗ Tς)) |Fn).

Because Fn = 0(T0)▽F
(1)
n↓1▽F

(2)
n↓1 and that F

(1)
n↓1 and F

(2)
n↓1 are independent, using substitution

property, we get

E(Xn+1|Fn) = E(X(1)
n (ω(t↗ Tς)) |Tς, F

(1)
n↓1) + E(X(2)

n (ω(t↗ Tς)) |Tς,F
(2)
n↓1)

= X
(1)
n↓1(ω(t↗ Tς)) + X

(2)
n↓1(ω(t↗ Tς)) = Xn(t) ,

which proves (ii).
To prove (iii), we use the fact that Xn(t) ↔ 0 and {Xn(t)}n↘1 is a martingale, which implies

that for any t > 0, Xn(t) is convergent a.s. to some process X(t). By Theorem 5.1, X is a solution
process satisfying

X(t)=


0 if Tς ↔ t,
X(1)(ω(t↗ Tς)) + X(2)(ω(t↗ Tς)) if Tς < t.

Also,

E(X1(t)) = E(2↽(ω(t↗ Tς))) =

∫ t

0

2↽(ω(t↗ s))e↓sds = ↽(t).

By the martingale property, E(Xn(t)) = ↽(t) for all n ↔ 1. To show that E(X(t)) = ↽(t), it suffices
to show that for each t > 0, the sequence E(Xn(t)⇁) is bounded from above for some ς > 1.

Fix ς ↑ (1, 1/↼). Let ↽⇁ be the function from Remark 3.7, i.e. ↽⇁(t) = E(X̃⇁
≃(t)) with X̃≃ =

(t↗ S̃)↓φ
[S̃<t] (recall, ↽(t) = E(X̃≃(t)) ). By Jensen’s inequality,

↽⇁(t) ↔
(
E(X̃≃)

)⇁

= ↽(t)⇁.
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We will show by induction on n ↔ 1 that E(Xn(t)⇁) → ↼ϑ(t)
2ϑ . For n = 1,

E(X1(t)
⇁) = E(↽(ω(t↗ Tς))

⇁) → E[↽⇁(ω(t↗ Tς)))

=

∫ t

0

e↓s↽⇁(ω(t↗ s))ds =
↽⇁(t)

2⇁

according to Remark 3.7. Suppose E(Xn↓1(t)⇁) → ↼ϑ(t)
2ϑ for some n ↔ 2. Using the inequality

(a+ b)⇁ → 2⇁↓1(a⇁ + b⇁), we have

Xn(t)
⇁ →

{
0 if Tς ↔ t,

2⇁↓1
(
X

(1)
n↓1(ω(t↗ Tς))⇁ + X

(2)
n↓1(ω(t↗ Tς))⇁

)
if Tς < t.

Thus,

E(Xn(t)
⇁) → 2⇁↓1

∫ t

0

e↓s2E(Xn↓1(ω(t↗ s))⇁)ds = 2⇁↓1

∫ t

0

e↓s2
↽⇁(ω(t↗ s))

2⇁
ds

=

∫ t

0

e↓s↽⇁(ω(t↗ s))ds =
↽⇁(t)

2⇁
. (6.22)

Thus, the sequence Xn is uniformly integrable and so E(X(t)) = limn↗↑ E(Xn(t)) = ↽(t), while
the inequality for E(X(t)⇁) from part (iii) follows from (6.22) by taking n ≃ ↘ and applying
Fatou’s Lemma.

Theorem 6.8. Let X(t) be given by Proposition 6.7, part (iii). For each ϱ ↔ 0, the process Xϖ(t) =
e↓ϖX(t)

is a solution process satisfying (2.16) with u0 = 1, while the function uϖ(t) = E(Xϖ(t))
solves (1.2). Moreover, for ϱ > 0,

lim
t↗↑

1↗ uϖ(t)

t↓φ
= ϱ.

Proof. The fact that with u0 = 1, Xϖ(t) satisfies (2.16) and uϖ(t) solves (1.2) comes directly from
Proposition 6.6. We only need to show the convergence rate. On one hand,

1↗ uϖ(t) = E(1↗ e↓ϖX(t)) → E(ϱX(t)) = ϱE(X(t)) = ϱ↽(t).

Then, by Theorem 3.5,

lim sup
t↗↑

1↗ uϖ(t)

t↓φ
= lim sup

t↗↑

↽(t)

t↓φ
= ϱ.

It remains to show that
lim inf
t↗↑

1↗ uϖ(t)

t↓φ
↔ ϱ.

Since ↼ ↑ (0, 1), there exists ς ↑ (1, 2) such that ↼ς ↑ (0, 1). By Lemma 6.9, there exists a
constant c > 0 such 1↗ e↓x ↔ x↗ cx⇁ for all x ↔ 0. Thus,

1↗ uϖ(t) = E[1↗ e↓ϖX(t)] ↔ E(ϱX(t)↗ ϱ⇁X(t)⇁)

= ϱE(X(t))↗ ϱ⇁E(X(t)⇁)
= ϱ↽(t)↗ ϱ⇁E(X(t)⇁) . (6.23)
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By (3.6) and Proposition 6.7, part (iii), we have

E(Xn(t)
⇁) → ↽⇁(t)

2⇁
→ Ct↓φ⇁ ⇔t > 0, n ↑ N.

Substituting this estimate into (6.23), we get

lim inf
n↗↑

1↗ uϖ(t)

t↓φ
↔ lim inf

n↗↑


ϱ
↽(t)

t↓φ
↗ C

t↓φ⇁

t↓φ


= ϱ lim

n↗↑

↽(t)

t↓φ
= ϱ.

This completes the proof.

Lemma 6.9. For each ς ↑ (1, 2), there exists c⇁ > 0 such that

1↗ e↓x ↔ x↗ c⇁x
⇁ ⇔ x > 0

Proof. For a fixed c > 0, let f(x) = 10e↓x ↗ (x↗ cx⇁). Then

f →(x) = e↓x ↗ 1 + cςx⇁↓1

f →→(x) = ↗e↓x + cς(ς ↗ 1)x⇁↓2

Since ς ↑ (1, 2), one can choose c sufficiently large such that f →→(x) > 0 for all x > 0. Then
f →(x) ↔ f →(0) = 0 for all x > 0. Then f(x) ↔ f(0) = 0 for all x > 0.

6.3 Proof of Theorem 6.1 for u0 ↑ Rω

According to Proposition 5.4, parts 1(ii) and 2(ii) (see also [13, Prop. 2.2], [14, Prop. 4.1]), when
u0 ↔ 0, the stochastic Picard iterations scheme for the ω-Riccati model with the ground state
X0(t) ⇐ 1, i.e.,

X0(t) ⇐ 1, Xn(t) =

{
u0 if Tς ↔ t,

X
(1)
n↓1(ω(t↗ Tς))X

(2)
n↓1(ω(t↗ Tς)) if Tς < t,

where X(1)
n↓1 and X

(2)
n↓1 are, conditionally on Tς, i.i.d. copies of Xn↓1, almost surely has a limit – a

maximal solution process X(t), satisfying (2.16). Moreover, if u0 ↑ Rω, then u(t) = E(X(t)) <
↘ is a solution to (1.2), where Rω is defined by (6.2).

Let ϱ > 0. Consider XM,⇁,ϖ(t) be the process defined in Theorem 6.5 (defined for ω ↑ (0, 1]),
and the process Xϖ(t) is the process defined in Theorem 6.8 (defined for ω > 2). For each ϱ ↔ 0,
and ω > 1 consider the following solution process (satisfying (2.16) with u0 = 1):

Xϖ
u0=1(t) =


XM,⇁,ϖ(t) if 1 < ω → 2,

Xϖ(t) if ω > 2.

By Theorem 6.5 and Theorem 6.8, for each ϱ > 0, the function u≃
ϖ(t) = E(Xϖ

u0=1(t)) satisfies

1↗ u≃
ϖ(t)

t↓φ
= ϱ.
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Let u0 ↑ Rϖ. Note that process Xϖ(t) = X(t)Xϖ
u0=1(t) satisfies (2.16), i.e.

Xϖ,u0(t) =


u0 if Tς ↔ t,

X(1)
ϖ,u0

(ω(t↗ Tς))X
(2)
ϖ,u0

(ω(t↗ Tς)) if Tς < t.

(This can be seen by multiplying both sides of (2.16) with u0 = 1 with corresponding sides of
(2.16) with u0 = 1.)

Thus, uϖ,u0(t) = E(Xϖ,u0(t)) satisfies (1.2) and 0 → uϖ,u0(t) → u(t). Note that X(t) = 1 on
the event [L < t]. Thus,

uϖ,u0(t) = E(X(t)Xϖ
u0=1(t)) = E(Xϖ

u0=1(t))↗ E((1↗X)Xϖ
u0=1(t))

= E(Xϖ
u0=1(t))↗ E((1↗X)Xϖ

u0=1(t) [L>t])

and
1↗ uϖ,u0(t)

t↓φ
=

1↗ u≃
ϖ(t)

t↓φ
+ tφE((1↗X)Xϖ

u0=1(t) [L>t]).

In the case u0 ↑ Rω, u0 > 1, we have ω > 5/2 and it follows from [14, Remark 3.3 and Thm 4.2]
that u(t) = E(X(t)) → 1 + ce↓t. Since we also have X(t) ↔ 1 when u0 > 1, we conclude that

0 → E((X ↗ 1)Xϖ
u0=1(t) [L>t]) → E(X ↗ 1) = u(t)↗ 1 → ce↓t.

In the case u0 ↑ [0, 1] from definition of X , in the case, u(t) = E(X(t)) ↑ [0, 1], and so

0 → E((1↗X)Xϖ
u0=1(t) [L>t]) → tφP(L > t) → Ce↓t.

Thus, for all u0 ↑ Rω

tφE((1↗X)Xϖ
u0=1(t) [L>t]) ≃ 0, as t ≃ ↘

Therefore,
1↗ uϖ,u0(t)

t↓φ
= ϱ,

which finishes the proof of Theorem 6.1.

6.4 Alternative proof of Theorem 6.1 for u0 = 0

In the case u0 = 0, (1.2) has a minimal solution u ⇐ 0 and a maximal solution u(t) = EX(t).
Athreya [2, Thm 2] uses the Picard’s iteration

u(0)(t) = e↓t→ω
, u(n)(t) =

∫ t

0

e↓(t↓s)u2
(n↓1)(ωs)ds

to derive a third solution to (1.2). He shows that the limit function u(t) = limn↗↑ u(n)(t) satisfies
lim inft↗↑ tφ(1↗ u(t)) ↔ 1. Below, we will show that one can use the stochastic Picard iterations
with the ground state

µ(t) = e↓t→ω

t>0

to generate infinitely many solutions to (1.2).
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Proposition 6.10. The sequence of stochastic processes

Xn(t) =


|v|=n↓1

µ2(ωn(t↗”v)), ⇔n ↔ 1.

converges almost surely to a solution process X(t) as n ≃ ↘. Moreover, uϖ(t) = E(X(t)ϖ)
satisfies (1.2) and

lim
t↗↑

1↗ uϖ(t)

t↓φ
= ϱ.

Proof. Following the the approach form the proof of Proposition 6.3 One can rewrite Xn(t) as

Xn(t) =


|v|=n↓1

exp

↗2(ωn(t↗”v))

↓φ


[Ln<t]

=


|v|=n↓1

exp


↗(t↗”v)↓φ

2n↓1


[Ln<t] = e↓Mn(t)

[Ln<t],

where

Mn(t) =
1

2n↓1

∑

|v|=n↓1

(t↗”v)
↓φ, Ln = sup

|v|=n

n∑

j=0

Tv|j

ωj
.

On the event [L > t], Xn(t) = 0 for sufficiently large n. On the event [L < t],

Mn+1(t) =
1

2n

∑

|w|=n

(t↗”w)
↓φ

=
1

2n

∑

|v|=n↓1

(
(t↗”v ↗ ω↓nTv1)

↓φ
+ (t↗”v ↗ ω↓nTv2)

↓φ
)

>
1

2n

∑

|v|=n↓1


(t↗”v)

↓φ + (t↗”v)
↓φ

=
1

2n↓1

∑

|v|=n↓1

(t↗”v)
↓φ = Mn(t).

Thus, the sequence Mn(t) is increasing on the event [L < t]. Thus, a limit M(t) = limn↗↑ Mn(t)
exists almost surely. Then, Xn(t) converges almost surely to X(t) = e↓M(t)

[L<t]. Note that

1

2n↓1

∑

|v|=n↓1

(t↗ Sn)
↓φ → Mn(t) →

1

2n↓1

∑

|v|=n↓1

(t↗ Ln)
↓φ.

In other words,
(t↗ Sn)

↓φ → Mn(t) → (t↗ Ln)
↓φ

Thus,
(t↗ S)↓φ

[L<t] → M(t) [L<t] → (t↗ L)↓φ
[L<t]. (6.24)
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Consequently, 0 < X(t) < 1 on the event [L < t]. As in the proof of Proposition 6.3, we have that
Xn(t) are stochastic Picard iterations of X0(t) = µ(t), i.e.

Xn(t) =


0 if Tς ↔ t,

X(1)
n↓1(ω(t↗ Tς))X

(2)
n↓1(ω(t↗ Tς)) if Tς < t.

where X(1)
n↓1 and X(2)

n↓1 are conditionally on Tς i.i.d. copies of Xn↓1. Thus,

X(t) =


0 if Tς ↔ t,
X(1)(ω(t↗ Tς))X(2)(ω(t↗ Tς)) if Tς < t.

where X(1) and X(2) are i.i.d. copies of X . For each ϱ > 0, uϖ(t) = E(X(t)ϖ) solves (1.2). From
here, one can use the same estimating technique used in the proof of Proposition 6.4 (ii) to show
that

lim
t↗↑

1↗ uϖ(t)

t↓φ
= ϱ.

7 Numerical Simulations
In this section, we present numerical results based on Monte Carlo simulation to experimentally
illustrate the construction of the multiple solutions to the ω-Riccati equations, particularly by sim-
ulating, for various values of ϱ > 0 solution processes XM,⇁,ϖ(t) – defined in Theorem 6.5 (for
ω ↑ (0, 1]), and the solution processes Xϖ(t) – defined in Theorem 6.8 (for ω > 2), via the use of
stochastic Picard iterations.

In the case 0 < ω → 2, the ground state is given by (6.5), i.e.

X0(t) =


1 if t → M,
1↗ ςt↓φ if t > M

where M > 0 is sufficiently large and ς > 0 is sufficiently small. Recall that by Theorem 6.5 that
the corresponding solution has an asymptotic behavior

lim
t↗↑

1↗ uϖ(t)

ϱςt↓φ
= 1. (7.1)

For numerical simulation, we choose ς = 0.5 and M = 10. We divide the time interval into
the lower range 0 → t → 4, middle range 4 < t < 64, and upper range 64 < t < 256, and
subdivide each range with equi-distance grid points in log-space. We use 20, 15, 10 grid points
for lower, middle, upper range, respectively. At each grid point t, we generate the process Xn=8

with a sample size of N = 200. For each realization of X8, we compute Xϖ
8 with ϱ = 1, 3, 9 and

approximate uϖ(t) ̸ EXϖ
8 (t). To check the convergence rate (7.1), we plot compare the log-log

plot of uϖ with the log-log plot of ϱςt↓φ (which is a straight line).
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Figure 3: Discrete graph of uϖ for ϱ = 1, 3, 9 and ω = 1.4

Figure 4: Interpolated graph of uϖ for ϱ = 1, 3, 9 and ω = 1.4

Figure 5: Log-log plot of ϱςt↓φ and Log-log plot of 1↗ uϖ for ϱ = 1, 3, 9 and ω = 1.4
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In the case ω > 2, the ground state is X0(t) = e↓↼(t) where ↽(t) = E(X̃≃(t)), see Theorem 3.5.
On can show using indiction that X̃0 is a limit of stochastic Picard iterations with the ground state
X̃0(t) = t↓φ

(t > 0):

X̃0(t) = t↓φ, X̃n(t) =


0 if T0 ↔ t

2X̃(1)
n↓1(ω(t↗ T0)) if T0 < t,

and by a uniform integrability argument, ↽(t) = limn↗↑ E(X̃n(t)). Recall that by Theorem 6.8,

lim
t↗↑

1↗ uϖ(t)

ϱt↓φ
= 1. (7.2)

To avoid technical difficulties connected to approximating ↽ before being able to simulate Xn=8,
we use the fact that ↽n(t) = E(X̃n(t)) satisfies a deterministic Picard iteration

↽0(t) = t↓φ, ↽n(t) =

∫ t

0

2e↓s↽n↓1(ω(t↗ s))ds

One can use Mathematica to get an explicit formula for ↽1, ↽2, ↽3,... However, these formula
exhibit numerical artifacts for large values of t. They collapse to 0 instead of decaying as t↓φ . To

50 100 150 200 250

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a)
10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b)

Figure 6: Graphs of ↽2 (a) and of ↽3 (b) with numerical artifacts

guarantee that ↽ decays as t↓φ , we will use the following approximations:

↽1(t) ̸ ↽̃1(t) =

  t

0 2e
↓s↽0(ω(t↗ s)) if t < 50

t↓φ if t > 50

↽2(t) ̸ ↽̃2(t) =

  t

0 2e
↓s↽̃1(ω(t↗ s)) if t < 50

t↓φ if t > 50

And then approximate ↽(t) ̸ ↽̃2(t), which significantly reduces the cost of computation. We will
discretize the time interval the same way as in the case 1 < ω → 2.
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Figure 7: Discrete graph of uϖ for ϱ = 1, 2, 4 and ω = 3

Figure 8: Interpolated graph of uϖ for ϱ = 1, 2, 4 and ω = 3

Figure 9: Log-log plot of ϱt↓φ and Log-log plot of 1↗ uϖ for ϱ = 1, 2, 4 and ω = 3
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